|
|
|
Математика случая Вероятность и статистика – основные факты Учебное пособие. М.: МЗ-Пресс, 2004. 2. Основы теории вероятностей Закон больших чисел Неравенство Чебышёва позволяет доказать замечательный результат, лежащий в основе математической статистики – закон больших чисел. Из него вытекает, что выборочные характеристики при возрастании числа опытов приближаются к теоретическим, а это дает возможность оценивать параметры вероятностных моделей по опытным данным. Без закона больших чисел не было бы Теорема Чебышёва. Пусть случайные величины Х1, Х2,…, Хk попарно независимы и существует число С такое, чтоD(Xi)<C при всех i = 1, 2, …, k. Тогда для любого положительного
Доказательство. Рассмотрим случайные величины Yk = Х1 + Х2+…,+ Хk и Zk = Yk/k. Тогда согласно утверждению 10 М(Yk) = М(Х1)+М(Х2)+…+М(Хk), D(Yk) = D(Х1)+D(Х2)+…+D(Хk). Из свойств математического ожидания следует, что М(Zk) = М(Yk)/k, а из свойств дисперсии - что D(Zk) = D(Yk)/k2. Таким образом, М(Zk) ={М(Х1)+М(Х2)+…+М(Хk)}/k, D(Zk) ={D(Х1)+D(Х2)+…+D(Хk)}/k2. Из условия теоремы Чебышёва, что Применим к Zk второе неравенство Чебышёва. Получим для стоящей в левой части неравенства (11) вероятности оценку что и требовалось доказать. Эта теорема была получена П.Л.Чебышёвым в той же работе 1867 г. «О средних величинах», что и неравенства Чебышёва. Пример 13. Пусть С = 1, В рассматриваемом случае правая часть неравенства (11) равно 100/ k. Она не превосходит 0,1, если k не меньше 1000, не превосходит 0,05, если k не меньше 2000, не превосходит 0,00001, если k не меньше 10 000 000. Правая часть неравенства (11), а вместе с ней и левая, при возрастании k и фиксированных С и Наиболее важен для вероятностно-статистических методов принятия решений (и для математической статистики в целом) случай, когда все Xi , i = 1, 2, …, имеют одно и то же математическое ожидание M(X1) и одну и ту же дисперсию Из закона больших чисел следует, что Здесь знак Сходимость частот к вероятностям. Уже отмечалось, что с точки зрения ряда естествоиспытателей вероятность событияА – это число, к которому приближается отношение количества осуществлений события А к количеству всех опытов при безграничном увеличении числа опытов. Известный математики Якоб Бернулли (1654-1705), живший в городе Базель в Швейцарии, в самом конце XVII века доказал это утверждение в рамках математической модели (опубликовано доказательство было лишь после его смерти, в 1713 году). Современная формулировка теоремы Бернулли такова. Теорема Бернулли. Пусть m – число наступлений события А в k независимых (попарно) испытаниях, и р есть вероятность наступления события А в каждом из испытаний. Тогда при любом
Доказательство. Как показано в примере 10, случайная величина m имеет биномиальное распределение с вероятностью успеха р и является суммой k независимых случайных величин Xi, i = 1, 2. …, k, каждое из которых равно 1 с вероятностью р и 0 с вероятностью 1-р, т.е. m= X1+ X2+…+ Xk .Применим к X1, X2,…, Xk теорему Чебышёва с С = р(1 - р) и получим требуемое неравенство (12). Теорема Бернулли дает возможность связать математическое определение вероятности (по А.Н.Колмогорову) с определением ряда естествоиспытателей (по Р. Мизесу (1883-1953)), согласно которому вероятность есть предел частоты в бесконечной последовательности испытаний. Продемонстрируем эту связь. Для этого сначала отметим, что при всех р. Действительно, Следовательно, в теореме Чебышёва можно использовать С = ¼. Тогда при любом р и фиксированном Есть и прямые экспериментальные подтверждения того, что частота осуществления определенных событий близка к вероятности, определенной из теоретических соображений. Рассмотрим бросания монеты. Поскольку и герб, и решетка имеют одинаковые шансы оказаться сверху, то вероятность выпадения герба равна ½ из соображений равновозможности. Французский естествоиспытатель XVIII века Бюффон бросил монету 4040 раз, герб выпал при этом 2048 раз. Частота появления герба в опыте Бюффона равна 0,507. Английский статистик К.Пирсон бросил монету 12000 раз и при этом наблюдал 6019 выпадений герба – частота 0,5016. В другой раз он бросил монету 24000 раз, герб выпал 12012 раз – частота 0,5005. Как видим, во всех этих случаях частоты лишь незначительно отличаются от теоретической вероятности 0,5 [6, с.148].
|