А.И. Орлов
Математика случая
Вероятность и статистика – основные факты

Учебное пособие. М.: МЗ-Пресс, 2004.    
 

4. Случайные величины и их распределения

Квантили

При описании дифференциации доходов, при нахождении доверительных границ для параметров распределений случайных величин и во многих иных случаях применяется такое понятие, как «квантиль порядка р», где 0 < p < 1 (обозначается хр). Квантиль порядка р – значение случайной величины, для которого функция распределения принимает значение р или имеет место «скачок» со значения меньше р до значения больше р (рис.2). Может случиться, что это условие выполняется для всех значений х, принадлежащих этому интервалу (т.е. функция распределения постоянна на этом интервале и равна р). Тогда каждое такое значение называется «квантилем порядкар». Для непрерывных функций распределения, как правило, существует единственный квантиль хр порядка р (рис.2), причем

F(xp) = p. (2)

Рис.2. Определение квантиля хр порядка р.

Пример 4. Найдем квантиль хр порядка р для функции распределения F(x) из (1).

При 0 < p < 1 квантиль хр находится из уравнения

,

т.е. хр = a + p(b – a) = a(1- p) +bp. При p = 0 любое x < a является квантилем порядка p = 0. Квантилем порядка p = 1 является любое число x > b.

Для дискретных распределений, как правило, не существует хр, удовлетворяющих уравнению (2). Точнее, если распределение случайной величины дается табл.1, где x1 < x2 < … < xk, то равенство (2), рассматриваемое как уравнение относительно хр, имеет решения только для k значений p, а именно,

p = p1,

p = p1 + p2,

p = p1 + p2 + p3,

p = p1 + p2 + … + pm, 3 < m < k,

p = p1 + p2 + … + pk.

Таблица 1.

Распределение дискретной случайной величины

Значения x случайной величины Х

х1

х2

хk

Вероятности P(X =x)

p1

p2

pk

Для перечисленных k значений вероятности p решение хр уравнения (2) неединственно, а именно,

F(x) = p1 + p2 + … + pm

для всех х таких, что xm < x < xm+1. Т.е. хрлюбое число из интервала (xm; xm+1]. Для всех остальных р из промежутка (0;1), не входящих в перечень (3), имеет место «скачок» со значения меньше р до значения больше р. А именно, если

p1 + p2 + … + pm <p < p1 + p2 + … + pm + pm+1,

то хр = xm+1.

Рассмотренное свойство дискретных распределений создает значительные трудности при табулировании и использовании подобных распределений, поскольку невозможным оказывается точно выдержать типовые численные значения характеристик распределения. В частности, это так для критических значений и уровней значимости непараметрических статистических критериев (см. ниже), поскольку распределения статистик этих критериев дискретны.

Предыдущая страница | Оглавление | Следующая страница