А.И. Орлов
Математика случая
Вероятность и статистика – основные факты

Учебное пособие. М.: МЗ-Пресс, 2004.    
 

4. Случайные величины и их распределения

Преобразования случайных величин

По каждой случайной величине Х определяют еще три величины – центрированную Y, нормированную V и приведенную U. Центрированная случайная величина Y – это разность между данной случайной величиной Х и ее математическим ожиданием М(Х), т.е. Y = Х – М(Х). Математическое ожидание центрированной случайной величины Yравно 0, а дисперсия – дисперсии данной случайной величины: М(Y) = 0, D(Y) = D(X). Функция распределения FY(x)центрированной случайной величины Y связана с функцией распределения F(x) исходной случайной величины Xсоотношением:

FY(x) =F(x + M(X)).

Для плотностей этих случайных величин справедливо равенство

fY(x) = f(x + M(X)).

Нормированная случайная величина V – это отношение данной случайной величины Х к ее среднему квадратическому отклонению , т.е. . Математическое ожидание и дисперсия нормированной случайной величины Vвыражаются через характеристики Х так:

,

где v – коэффициент вариации исходной случайной величины Х. Для функции распределения FV(x) и плотности fV(x)нормированной случайной величины V имеем:

,

где F(x) – функция распределения исходной случайной величины Х, а f(x) – ее плотность вероятности.

Приведенная случайная величина U – это центрированная и нормированная случайная величина:

.

Для приведенной случайной величины

. (7)

Нормированные, центрированные и приведенные случайные величины постоянно используются как в теоретических исследованиях, так и в алгоритмах, программных продуктах, нормативно-технической и инструктивно-методической документации. В частности, потому, что равенства позволяют упростить обоснования методов, формулировки теорем и расчетные формулы.

Используются преобразования случайных величин и более общего плана. Так, если Y = aX + b, где a и b – некоторые числа, то

(8)

Пример 7. Если то Y – приведенная случайная величина, и формулы (8) переходят в формулы (7).

С каждой случайной величиной Х можно связать множество случайных величин Y, заданных формулой Y = aX + b при различных a>0 и b. Это множество называют масштабно-сдвиговым семейством, порожденным случайной величинойХ. Функции распределения FY(x) составляют масштабно сдвиговое семейство распределений, порожденное функцией распределения F(x). Вместо Y = aX + b часто используют запись

(9)

где

Число с называют параметром сдвига, а число d - параметром масштаба. Формула (9) показывает, что Х – результат измерения некоторой величины – переходит в У – результат измерения той же величины, если начало измерения перенести в точку с, а затем использовать новую единицу измерения, в d раз большую старой.

Для масштабно-сдвигового семейства (9) распределение Х называют стандартным. В вероятностно-статистических методах принятия решений и других прикладных исследованиях используют стандартное нормальное распределение, стандартное распределение Вейбулла-Гнеденко, стандартное гамма-распределение и др. (см. ниже).

Применяют и другие преобразования случайных величин. Например, для положительной случайной величины Храссматривают Y = lg X, где lg X – десятичный логарифм числа Х. Цепочка равенств

FY(x) = P(lg X < x) = P(X < 10x) = F(10x)

связывает функции распределения Х и Y.

Предыдущая страница | Оглавление | Следующая страница