|
|
||||||||||||||||||||
Основы теории принятия решениий Учебное пособие. Москва, 2002. 4. Линейное программирование Задача об оптимизации смеси (упрощенный вариант). На химическом комбинате для оптимизации технологического процесса надо составить самую дешевую смесь, содержащую необходимое количество определенных веществ (обозначим их Т и Н). Энергетическая ценность смеси (в калориях) должна быть не менее заданной. Пусть для простоты смесь составляется из двух компонентов - К и С. Сколько каждого из них взять для включения в смесь? Исходные данные для расчетов приведены в табл.3. Табл.3. Исходные данные в задаче об оптимизации смеси.
Задача линейного программирования имеет вид: 3,8 К + 4,2 С → min , 0,10 К + 0,25 С ≥ 1,00 , 1,00 К + 0,25 С ≥ 5,00 , 110,00 К + 120,00 С ≥ 400,00 , К ≥ 0 , С ≥ 0 . Ее графическое решение представлено на рис.4. Рис.4. Графическое решение задачи об оптимизации смеси. На рис.4 ради облегчения восприятия четыре прямые обозначены номерами (1) - (4). Прямая (1) - это прямая 1,00К + 0,25С = 5,00 (ограничение по веществу Н). Она проходит, как и показано на рисунке, через точки (5,0) на оси абсцисс и (0,20) на оси ординат. Обратите внимание, что допустимые значения параметров (К, С) лежат выше прямой (1), в отличие от ранее рассмотренных случаев в предыдущей производственной задаче. Прямая (2) - это прямая 110,00 К + 120,00 С = 400,00 (ограничение по калориям). Обратим внимание, что в области неотрицательных С она расположена всюду ниже прямой (1). Действительно, это верно при К=0, прямая (1) проходит через точку (0,20), а прямая (2) - через точку (0, 400/120). Точка пересечения двух прямых находится при решении системы уравнений 1,00 К + 0,25 С = 5,00 , 110,00 К + 120,00 С = 400,00 . Из первого уравнения К = 5 - 0,25 С. Подставим во второе: 110 (5- 0,25 С) + 120 С = 400, откуда 550 - 27,5 С + 120 С = 400. Следовательно, 150 = - 92,5 С, т.е. решение достигается при отрицательном С. Это и означает, что при всех положительных С прямая (2) лежит ниже прямой (1). Значит, если выполнено ограничения по Н, то обязательно выполнено и ограничение по калориям. Мы столкнулись с новым явлением - некоторые ограничения с математической точки зрения могут оказаться лишними. С экономической точки зрения они необходимы, отражают существенные черты постановки задачи, но в данном случае внутренняя структура задачи оказалась такова, что ограничение по калориям не участвует в формировании допустимой области параметров и нахождении решения. Прямая (4) - это прямая 0,1 К + 0,25 С = 1 (ограничение по веществу Т). Она проходит, как и показано на рисунке, через точки (10,0) на оси абсцисс и (0,4) на оси ординат. Обратите внимание, что допустимые значения параметров (К,С) лежат выше прямой (4), как и для прямой (1). Следовательно, область допустимых значений параметров (К, С) является неограниченной сверху. Из всей плоскости она выделяется осями координат (лежит в первом квадранте) и прямыми (1) и (4) (лежит выше этих прямых). Область допустимых значений параметров (К, С) можно назвать "неограниченным многоугольником". Минимум целевой функции 3,8 К + 4,2 С может достигаться только в вершинах этого "многоугольника". Вершин всего три. Это пересечения с осями абсцисс (10,0) и ординат (0,20) прямых (1) и (4) (в каждом случае из двух пересечений берется то, которое удовлетворяет обоим ограничениям). Третья вершина - это точка пересечения прямых (1) и (4), координаты которой находятся при решении системы уравнений 0,10 К + 0,25 С = 1,00 , 1,00 К + 0,25 С = 5,00 . Из второго уравнения К = 5 - 0,25 С, из первого 0,10 (5 - 0,25 С) + 0,25 С = 0,5 - 0,025 С + 0,25 С = 0,5 + 0,225 С = 1, откуда С = 0,5/0,225 = 20/9 и К = 5 - 5/9 = 40/9. Итак, А = (40/9; 20/9). Прямая (3) на рис.4 - это прямая, соответствующая целевой функции 3,8 К + 4,2 С . Она проходит между прямыми (1) и (4), задающими ограничения, и минимум достигается в точке А, через которую и проходит прямая (3). Следовательно, минимум равен 3,8х40/9 + 4,2х20/9 = 236/9. Задача об оптимизации смеси полностью решена. Двойственная задача, построенная по описанным выше правилам, имеет приведенный ниже вид (мы повторяем здесь и исходную задачу об оптимизации смеси, чтобы наглядно продемонстрировать технологию построения двойственной задачи): 3,8 К + 4,2 С → min , W1 + 5 W2 + 400 W3 → max , 0,10 К + 0,25 С ≥ 1,00 , 0,1 W1 + 1,10 W2 + 110 W3 ≤ 3,8 , 1,00 К + 0,25 С ≥ 5,00 , 0,25W1 + 0,25 W2 + 120 W3 ≤ 4,2 , 110,00 К + 120,00 С ≥ 400,00 , W1 ≥ 0 , К ≥ 0 , W2 ≥ 0 , С ≥ 0 . W3 ≥ 0 . Минимальное значение в прямой задаче, как и должно быть, равно максимальному значению в двойственной задаче, т.е. оба числа равны 236/9. Интерпретация двойственных переменных: W1 - "стоимость" единицы вещества Т, а W2 - "стоимость" единицы вещества Н, измеренные "по их вкладу" в целевую функцию. При этом W3 = 0, поскольку ограничение на число калорий никак не участвует в формировании оптимального решения. Итак, W1 , W2 , W3 - это т.н. объективно обусловленные оценки (по Л.В. Канторовичу) ресурсов (веществ Т и Н, калорий).
|