|
|
|
Основы теории принятия решениий Учебное пособие. Москва, 2002. 5. Методы решения задач линейного программирования Направленный перебор. Начнем с точки, удовлетворяющей ограничениям (ее можно найти простым перебором). Будем последовательно (или случайно - т.н. метод случайного поиска) менять ее координаты на определенную величину ∆, каждый раз в точку с более высоким значением целевой функции. Если выйдем на плоскость ограничения, будем двигаться по ней (находя одну из координат по уравнению ограничения). Затем движение по ребру (когда два ограничения-неравенства переходят в равенства)… Остановка - в вершине линейного многогранника. Решение найдено! (Более строго выражаясь, найдено с точностью до ∆ ; если необходимо, в окрестности найденного решения проводим направленный перебор с шагом ∆/2 , ∆/4 и т.д.)
|