А.И. Орлов       
Основы теории принятия решениий       
Учебное пособие. Москва, 2002.

9.Теория графов и оптимизация
    

О многообразии оптимизационных задач. В различных проблемах принятия решений возникают самые разнообразные задачи оптимизации. Для их решения применяются те или иные методы, точные или приближенные. Задачи оптимизации часто используются в теоретико-экономических исследованиях. Достаточно вспомнить оптимизацию экономического роста страны с помощью матрицы межотраслевого баланса Василия Леонтьева или микроэкономические задачи определения оптимального объема выпуска по функции издержек при фиксированной цене (или в условиях монополии) или минимизации издержек при заданном объеме выпуска путем выбора оптимального соотношения факторов производства (с учетом платы за них).

Кроме затронутых выше методов решения задач оптимизации, напомним о том, что гладкие функции оптимизируют, приравнивая 0 производную (для функций нескольких переменных - частные производные). При наличии ограничений используют множители Лагранжа. Эти методы обычно излагаются в курсах высшей математики и потому опущены здесь.

Предыдущая страница | Оглавление | Следующая страница