А.И. Орлов       
Теория принятия решений       
Учебное пособие. - М.: Издательство "Март", 2004.

1. ТЕХНОЛОГИЯ И ПРОЦЕДУРЫ РАЗРАБОТКИ И ПРИНЯТИЯ УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ
    

1.3.3. О некоторых направлениях фундаментальной

и прикладной науки

Проанализируем влияние фундаментальной и прикладной науки на развитие и эффективное использование новой техники и технического прогресса. Для этого кратко рассмотрим связь отдельных направлений фундаментальных и прикладных научных исследований и соответствующих сторон технического прогресса, включая появление не только новых технологий, но и новых отраслей промышленности. Обратим внимание прежде всего на нововведения (инновации), особенно те, что потребовали значительных капиталовложений (инвестиций).

Даже самый первый взгляд на структуру промышленности позволяет выделить отрасли, порожденные научно-техническим прогрессом ХХ в. Это прежде всего возникшие во второй половине ХХ в. атомная промышленность (ядерные вооружения, атомные электростанции, надводные и подводные суда с атомными двигателями, предприятия, производящие все, что необходимо для атомных реакторов и ядерного оружия), космическая промышленность (космические станции, гражданские и военные спутники и средства доставки), электронное машиностроение (производство и использование компьютеров, их систем и сетей, программного обеспечения).

Если взглянуть на более ранний период, то с первой половины ХХ в. авиационная промышленность, химия, электроэнергетика - это символ новой техники и технического прогресса. Каждая из этих отраслей промышленности была в свое время на острие прогресса. Рассмотрим, например, авиационную промышленность. В начале ХХ в. - пионерские попытки и первые рекорды. В Первую мировую войну уже действуют авиационные подразделения. Между войнами авиационная промышленность, видимо, занимала наиболее престижное место среди всех отраслей промышленности (после Второй мировой войны ее с этого места вытеснила космическая промышленность). Авиаконструктор был самым престижным из инженеров. Химическая промышленность в СССР наиболее быстро развивалась, видимо, в 1960-е годы. Знаменитый план ГОЭЛРО дал мощный толчок советской электроэнергетике.

Если же разбираться в ситуации глубже, то практически каждая отрасль промышленности постоянно находится в развитии под влиянием фундаментальных и прикладных научных исследований и технического прогресса. Постоянно обновляются основные производственные фонды, внедряются новые технологические процессы, основанные на достижениях фундаментальной и прикладной науки. Например, внедрение лазерной техники для контроля качества в машиностроении поднимает уровень обеспечения качества на принципиально новую ступень.

Отметим исследования по электричеству. В течение ряда столетий они служили примером типичных фундаментальных изысканий, ничего не дающих практике. Наконец, в первой половине ХIХ в. появился телеграф, принципиально изменивший ситуацию со связью - она стала практически мгновенной (разумеется, между точками, соединенными телеграфной линией). (Это была революция в управлении организациями, имеющими филиалы. Ранее каждый филиал должен был действовать во многом самостоятельно, поскольку для того, чтобы связаться с центром и получить ответ, требовалось много времени - дни, недели, а то и месяцы.) А во второй половине ХIХ в. были изобретены первые электрические лампочки, в корне изменившие как производство, так и быт ХХ в. (по сравнению с ХIХ в.).

Фундаментальные и прикладные научные исследования активно используются не только в промышленности, но и в сельском хозяйстве (генная инженерия, микробиологические добавки и др.), в медицине (томографы и другая медицинская техника), при обучении (дистанционное образование, обучающие системы), на транспорте (компьютерные средства навигации), в индустрии развлечений (телевизоры и другие радиоэлектронные системы, диски CD-ROM), и т.д.

Рассмотрим некоторые конкретные области новой техники и технического прогресса, порожденные фундаментальными и прикладными научными исследованиями.

При анализе влияния фундаментальной и прикладной науки вполне обоснованным является большое внимание, уделяемое таким классическим областям фундаментальной науки, как физика и химия. С ними тесно связаны многие новые разделы техники и технологии, порожденные техническим прогрессом. Выше об этом шла речь.

С развитием научно-технического прогресса и вводом в эксплуатацию сложных технических систем различных типов проявилась слабость человеческого звена в управлении такими системами. Например, скорости самолетов стали такими, что пилот истребителя не успевал реагировать на маневры своего противника, а наводчик зенитного орудия не успевал отслеживать маневры цели. Скорость реакции человека в человеко-машинных системах перестала быть адекватной. Точнее, появился "социальный заказ" на создание систем автоматического регулирования, действующих (полностью или частично) без вмешательства человека и замещающих ряд функций человека. Этот "заказ" стал весьма актуальным в середине ХХ в.

Сначала этот заказ был осмыслен в области теории, и соответствующие исследования появились в прикладной математике. В абстрактных терминах были поставлены соответствующие математические проблемы, разработаны подходы к их решению, предложены и изучены методы расчетов, доказаны соответствующие теоремы. В итоге - созданы конкретные методики постановки и решения задач автоматического регулирования.

Затем от прикладной математики работы перешли в область технических наук. При этом переходе абстрактные математические положения наполнялись конкретным техническим содержанием, связывались с деятельностью конкретных приборов. Они привели к появлению теории автоматического регулирования и соответствующих технических устройств, которые без участия человека могут достаточно адекватно реагировать на внешние возмущения и воздействия, вносить изменения в поведение управляемой системы с целью достижения поставленной цели в изменившихся условиях.

Следующий шаг - разнообразные применения теории автоматического регулирования. Прежде всего назовем высокоточные следящие системы, избавляющие оператора ПВО (или иных служб, связанных со слежением за противником) от необходимости вручную отслеживать маневры цели. За человеком осталось самое важное - принятие решения по поводу цели. А именно, речь идет о выборе из спектра возможных решений - от пассивного отслеживания движения цели, ее идентификации (в частности, определения ее национальной принадлежности) и прогнозирования ее намерений до того или иного воздействия на цель - информационного, силового и др.

Принятие решений также может быть частично автоматизировано. После второй мировой войны стало развиваться научное направление под названием "Исследование операций", в котором разрабатываются подходы и методы принятия решений в сложных ситуациях. Об этом научном направлении, для которого знаковыми являются термины "кибернетика", "системный анализ", "теория игр", речь пойдет отдельно. Здесь отметим, что рассматривается очередной пример того, что синтез различных направлений фундаментальных и прикладных научных исследований является главной составляющей научно-технического прогресса, позволяющей с помощью передовых технологий создавать современные технические системы.

Теория автоматического регулирования является существенной частью информационного обеспечения современных систем нападения и защиты. Бортовой компьютер самолета на основе соответствующих математических моделей может самостоятельно принимать решения, например, по выпуску помех (воспринимаемых противником как цели, среди которых "теряется" реальная цель), по оперативному ответу на действия противника, и т.д. Преимуществом по сравнению с оперативными решениями, принимаемыми пилотом-человеком, является быстрота - компьютеру требуется во много раз меньше времени. Однако стратегические решения в системах нападения и защиты должен принимать человек. Человек всегда должен иметь возможность взять управление на себя. Иначе мы можем очутиться в ситуации, описанной в научной фантастике, например, у С.Лема, когда наделенные возможностями принимать решения системы нападения и защиты развиваются автономно, ведут борьбу друг с другом, а их создатели - с обеих сторон - не могут вмешаться в процесс противостояния даже тогда, когда это необходимо для обеспечения стратегической безопасности на основе договоров между государствами.

Системы автоматического управления, позволяющие корректировать движение системы, в частности, при наведении ее на цель, обеспечили возможность создания высокоточного оружия. Только наукоемкие технологии позволили создать высокоточное оружие, позволяющее поразить определенную точку (например, здание или движущийся объект), практически не затронув ее окружение.

Рассматриваемые технологии имеют не только оборонные, но и важные народнохозяйственные применения, в частности, в машиностроении. Они позволяют, в частности, разрабатывать станки и технологические процессы, позволяющие с минимальными отходами выполнять изделия сложных профилей, оперативно реагировать на изменения свойств сырья, материалов и инструментов, в результате обеспечивать современный уровень качества изготовления.

Фундаментальные и прикладные исследования в области механики сплошных сред, в частности, в газодинамике, позволили создать принципиально новый для своего времени класс двигателей - турбореактивные двигатели. Они соединяют в себе достоинства ракетной техники, способной двигаться в безвоздушном пространстве, и традиционных авиационных двигателей, использующих атмосферный воздух и входящий в его состав кислород.

О ракетной технике как одном из наиболее ярких символов технического прогресса в ХХ в. необходимо сказать особо. До ХХ в. ракеты использовались лишь в фейерверках и в чисто теоретических разработках, из которых наибольшее чисто человеческое восхищение вызывает предсмертный проект члена Исполнительного Комитета партии "Народная Воля" Кибальчича (1881). В начале ХХ в. ракеты заняли основное место в фантастических проектах межпланетных путешествий, разработанных Циолковским. И с 1930-х годов начались планомерные работы по их созданию.

Эти работы можно рассматривать как типовой пример влияния фундаментальной и прикладной науки (механики, материаловедения, химии и др.) на развитие и эффективное использование новой техники и технического прогресса в оборонно-промышленном комплексе. Уже в период второй мировой войны ракеты использовались как средство доставки взрывчатых зарядов (ракетами Фау-1 и Фау-2 фашисты обстреливали Лондон). В тот же период были созданы первые реактивные самолеты.

Следующий шаг - баллистические ракеты, позволившие доставлять ядерные заряды в любую точку Земного шара. Они же обеспечили вывод на орбиту первого советского спутника Земли и первого советского космонавта. Эти успехи послужили для СССР мощным психологическим оружием, подорвав веру вероятного противника (т.е. США) в превосходство своей экономической системы. В книгах американских экономистов 1960-х годов (например, в учебнике «Экономика» П. Самуэльсона [7]) постоянно обсуждалась мысль о том, что в ближайшее время (а именно, к концу ХХ в.) экономическая мощь СССР сравняется с экономической мощью США, и лишь отдельные случайные причины на год-другой могут оттянуть этот момент.

К настоящему времени ракетная техника достигла такого уровня развития, что стали возможны полеты на планеты Солнечной системы. Остановка теперь, во-первых, за биологическим обеспечением таких полетов (неизвестно, как отреагирует человеческий организм на столь долгое пребывание в невесомости) и за обоснованием экономической целесообразности межпланетных путешествий. Таким образом, необходимо констатировать, что ракетная техника значительно опередила другие направления развития человечества.

Впечатляющим примером влияния фундаментальной и прикладной науки на развитие и эффективное использование новой техники и технического прогресса в оборонно-промышленном комплексе является создание нетрадиционного оружия - вакуумного (выжигается воздух в некотором объеме, и этот объем "схлопывается", уничтожая все живое, в нем находящееся), лазерного (газодинамические, магнитодинамические и т.д. квантовые генераторы, в литературной форме предсказанные А.Н.Толстым в виде "гиперболоида инженера Гарина").

На бытовом уровне примеры технического прогресса, связанные с появлением новой техники, дает радиоэлектроника. Первые варианты радиоприемников, телевизоров, компьютеров использовали электронные лампы - довольно объемные детали. В результате и сами изделия занимали достаточно большой объем. Принципиально новое продвижение было связано с миниатюризацией основных составляющих, т.е. с переходов к транзисторам, электронным платам, короче, чипам. В результате практически исчезли ограничения по использованию компьютеров в рамках любых иных приборов - их можно встроить не только в автомобиль или стиральную машину, но и в мобильный телефон и наручные часы, шариковую ручку и пуговицу. Ограничением является то, что компьютером пользуется человек, значит, информация с компьютера должна быть доступна его глазам, а ввод информации в компьютер должен быть возможен для его пальцев. С другой стороны, достижения радиоэлектроники весьма полезны, например, для спецслужб, поскольку позволяют весьма уменьшить размеры приборов, собирающих и анализирующих информацию. Для большинства населения большее значение имеет принципиальная возможность создания компьютеров, позволяющих с помощью небольшого пульта управлять всей бытовой техникой в квартире, обеспечивать связь, в том числе международную. Компьютерные сети уже позволяют многим специалистам работать дома, а не в офисе.

Предыдущая страница | Оглавление | Следующая страница