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Preface

This manuscript is a second edition of the collection of problems that I have been using in teach-
ing intermediate and advanced level econometrics courses at the New Economic School (NES),
Moscow, for several years. All problems are accompanied by sample solutions that may be viewed
“canonical” within the philosophy of NES econometrics courses. Approximately, chapters 1-5 and
11 of the collection belong to a course in intermediate level econometrics (“Econometrics I1I” in
the NES internal course structure); chapters 6-10 — to a course in advanced level econometrics
(“Econometrics IV” | respectively). The problems in chapters 1214 require knowledge of advanced
and special material. They have been used in the NES course “Topics in Econometrics”.

Most of the problems are not new. Many are inspired by my former teachers of econometrics
in different years: Hyungtaik Ahn, Mahmoud El-Gamal, Bruce Hansen, Yuichi Kitamura, Charles
Manski, Gautam Tripathi, and my dissertation supervisor Kenneth West. Many problems are
borrowed from their problem sets, as well as problem sets of other leading econometrics scholars.
Some originate from the Problems and Solutions section of the journal Econometric Theory, where
the author have published several problems.

The release of this collection would be hard without valuable help of my teaching assistants
during various years: Andrey Vasnev, Viktor Subbotin, Semyon Polbennikov, Alexander Vaschilko,
Denis Sokolov, Oleg Itskhoki, Andrey Shabalin, and Stanislav Kolenikov, to whom go my deep-
est thanks. I wish all of them success in further studying the exciting science of econometrics.
My thanks also go to my students and assistants who spotted errors and typos that crept into
the first edition of this manual, especially Dmitry Shakin, Denis Sokolov, Pavel Stetsenko, and
Georgy Kartashov. Preparation of this manual was supported in part by the Swedish Professorship
(2000-2003) from the Economics Education and Research Consortium, with funds provided by the
Government of Sweden through the Eurasia Foundation.

I will be grateful to everyone who finds errors, mistakes and typos in this collection and reports
them to sanatoly@nes.ru.
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1. ASYMPTOTIC THEORY

1.1 Asymptotics of transformations

1. Suppose that vT(¢ — 2n) < N (0,1). Find the limiting distribution of T'(1 — cos ¢).

~

2. Suppose that T'(¢) — 27) <, N (0,1). Find the limiting distribution of T sin V.

3. Suppose that T 0% x3. Find the limiting distribution of T log 0.

1.2 Asymptotics of t-ratios

Let {X;}™ , be a random sample of scalar random variables with B[X;] = u, V[X;] = 02, B[(X; — p)?]
=0, B[(X; — n)*] = 7, where all parameters are finite.

X
(a) Define T,, = —, where
o

Derive the limiting distribution of \/nT},, under the assumption p = 0.

(b) Now suppose it is not assumed that g = 0. Derive the limiting distribution of

n—oo

vn <Tn - plian> .

Be sure your answer reduces to the result of part (a) when p = 0.

X
(c) Define R,, = —, where
T
1 n
7=~ g X?
n
i=1

is the constrained estimator of o under the (possibly incorrect) assumption u = 0. Derive
the limiting distribution of

NG (Rn — plimRn>

n—oo

for arbitrary p and 02 > 0. Under what conditions on ; and o2 will this asymptotic distrib-
ution be the same as in part (b)?

ASYMPTOTIC THEORY 13



1.3 Escaping probability mass

Let X = {x1,...,7,} be a random sample from some population with E[z] = p and V [z] = o2.

Also, let A, denote an event such that Pr{A,} =1— % and the distribution of A, is independent
of the distribution of . Now construct the following randomized estimator of yu:

.| =, if A, happens,
Pn =19 n  otherwise.

(i) Find the bias, variance, and MSE of fi,,. Show how they behave as n — oo.
(ii) Is f1,, a consistent estimator of u? Find the asymptotic distribution of \/n(f,, — ).

(iii) Use this distribution to construct an approximately (1 — a) x 100% confidence interval for .
Compare this CI with the one obtained by using Z,, as an estimator of u.

1.4  Creeping bug on simplex

Consider a positive (z,y) orthant, i.e. ]R%r, and the unit simplex on it, i.e. the line segment x+y = 1,
x > 0, y > 0. Take an arbitrary natural number k£ € N. Imagine a bug starting creeping from the

origin (z,y) = (0,0). Each second the bug goes either in the positive x direction with probability

p, or in the positive y direction with probability 1 — p, each time covering distance % Evidently,

this way the bug reaches the unit simplex in k& seconds. Let it arrive there at point (zg,yx). Now
let k — oo, i.e. as if the bug shrinks in size and physical abilities per second. Determine:

(a) the probability limit of (zg,yx);
(b) the rate of convergence;

(c) the asymptotic distribution of (zg, yx)-

1.5 Asymptotics with shrinking regressor

Suppose that
Yyi = o+ fri + g,

where {u;} are IID with E[u;] = 0, E [uf] = ¢ and E [u}] = v, while the regressor z; is deter-
ministic: z; = p%, p € (0,1). Let the sample size be n. Discuss as fully as you can the asymptotic
behavior of the OLS estimates (&, (3, 62) of (a, 3,02) as n — oo.

1.6 Power trends

Suppose that
Yi = Pr; + 058, 1=1,--+,n,

14 ASYMPTOTIC THEORY



where g; ~ IID (0,1), while x; = i* for some known A, and a? = 61 for some known p.

1. Under what conditions on A and p is the OLS estimator of 3 consistent? Derive its asymptotic
distribution when it is consistent.

2. Under what conditions on A and p is the GLS estimator of § consistent? Derive its asymptotic
distribution when it is consistent.

1.7 Asymptotics of rotated logarithms

Let the positive random vector (Uy,, V,,) be such that
U, e, d 0 Wyu  Wuw
()= 0 )= () (2 2))
as n — oo. Find the joint asymptotic distribution of
InU, —InV,
nU,+InV, )’

What is the condition under which In U, —InV,, and In U, +1nV,, are asymptotically independent?

1.8 Trended vs. differenced regression

Consider a linear model with a linearly trending regressor:
Y =+ Bt +e,

where the sequence ¢; is independently and identically distributed according to some distribution
D with mean zero and variance 2. The object of interest is 3.

1. Write out the OLS estimator 3 of 3 in deviations form. Find the asymptotic distribution of
8.

2. An investigator suggests getting rid of the trending regressor by taking differences to obtain
Y — Y1 =0+ — e

and estimating # by OLS. Write out the OLS estimator 3 of § and find its asymptotic
distribution.

3. Compare the estimators B and § in terms of asymptotic efficiency.

ASYMPTOTICS OF ROTATED LOGARITHMS 15



1.9 Second-order Delta-Method

Let S, = %Z?:l X;, where X;, ¢ = 1,--- ,n, is an IID sample of scalar random variables with

E[X;] = u and V[X;] = 1. It is easy to show that \/n(S2 — u?) 4, N(0,44%) when p # 0.

(a) Find the asymptotic distribution of S2 when u = 0, by taking a square of the asymptotic
distribution of S,,.

(b) Find the asymptotic distribution of cos(S,). Hint: take a higher order Taylor expansion
applied to cos(Sy).

(c) Using the technique of part (b), formulate and prove an analog of the Delta-Method for the
case when the function is scalar-valued, has zero first derivative and nonzero second derivative
(when the derivatives are evaluated at the probability limit). For simplicity, let all involved
random variables be scalars.

1.10 Long run variance for AR(1)

Often one needs to estimate the long-run variance V. = Tlim \% (% Zle ztet> of the stationary

—00
sequence zie; that satisfies the restriction E[e;|z;] = 0. Derive a compact expression for V,. in the

case when e; and z; follow independent scalar AR(1) processes. For this example, propose a way
to consistently estimate V., and show your estimator’s consistency.

1.11 Asymptotics of averages of AR(1) and MA(1)

Let z; be a martingale difference sequence relative to its own past, and let all conditions for the
CLT be satisfied: Tzp = % Zthl Ty 4, N(0,0?). Let now y = py—1 + a4 and 2z = a4 + 041,

where |p| < 1 and |0] < 1. Consider time averages Y = %Zthl yr and Zp = %Zle 2.

1. Are y; and z; martingale difference sequences relative to their own past?
2. Find the asymptotic distributions of 7 and Z7.

3. How would you estimate the asymptotic variances of g and zp?

4. Repeat what you did in parts 1-3 when x; is a kx 1 vector, and we have vVITXp = % Zthl Xy LA
N(0,%), yt = Pyi—1+x¢, 2t = x¢ + O%x4_1, and P and © are k x k matrices with eigenvalues

inside the unit circle.
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1.12  Asymptotics for impulse response functions

A stationary and ergodic process z; that admits the representation
o0
a=p+ Y b,
§=0

where 2;‘;0 |¢;] < oo and &; is zero mean IID, is called linear. The function IRF(j) = ¢; is called
impulse response function of 2, reflecting the fact that ¢; = 0z/0e;—j, a response of 2 to its unit
shock j periods ago.

1. Show that the strong zero mean AR(1) and ARMA(1,1) processes

Y = pyi—1 +ei, |pl <1

and
2= pz—1+e— 01, |p| <1, 10| <1, 0+#p,

are linear and derive their impulse response functions.

2. Suppose the sample z1, - - - , zp is given. For the AR(1) process, construct an estimator of the
IRF on the basis of the OLS estimator of p. Derive the asymptotic distribution of your IRF
estimator for fixed horizon j as the sample size T — oo.

3. Suppose that for the ARMA(1,1) process one estimates p from the sample z;,--- , zr by

T
thg Zt2t—2
T )
Zt:3 Rt—1%2t—2

and 0 — by an appropriate root of the quadratic equation

D=

~

T A A
_ 0 D imo Ctli1
~2 T A2
146 D=2 €
On the basis of these estimates, construct an estimator of the impulse response function you

derived. Outline the steps (no need to show all math) which you would undertake in order
to derive its asymptotic distribution for fixed j as T — oc.

y €=z — PZ-1.
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2. BOOTSTRAP

2.1 Brief and exhaustive

1. Comment on: “The only difference between Monte—Carlo and the bootstrap is possibility and
impossibility, respectively, of sampling from the true population.”

2. Comment on: “When one does bootstrap, there is no reason to raise B too high: there is a
level when increasing B does not give any increase in precision”.

3. Comment on: “The bootstrap estimator of the parameter of interest is preferable to the
asymptotic one, since its rate of convergence to the true parameter is often larger”.

4. Suppose one has a random sample of n observations from the linear regression model
yi = w8+ e, Bleilzi] = 0.

Is the nonparametric bootstrap valid or invalid in the presence of heteroskedasticity? Explain.

2.2 Bootstrapping t-ratio

Consider the following bootstrap procedure. Using the nonparametric bootstrap, generate pseudosam-

A X

ples and calculate b(g at each bootstrap repetition. Find the quantiles ¢, /2 and qj_, /2 from
S
this bootstrap distribution, and construct

~

CT =1[0— s(0)q;_9.0 — 5(0)q; o).

Show that C1T is exactly the same as Hall’s percentile interval, and not the t-percentile interval.

2.3 Bootstrap bias correction

1. Consider a random variable x with mean p. A random sample {x;};; is available. One
estimates y by T, and p? by #2. Find out what the bootstrap bias corrected estimators of x
and p? are.

2. Suppose we have a sample of two independent observations z; = 0 and zo = 3 from the
same distribution. Let us be interested in E[z?] and (E[z])? which are natural to estimate by
22 = (2} +23) and 2% = $(21 + 22)%. Compute ezactly bootstrap-bias-corrected estimates of
the quantities of interest.
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3. Let the model be
y=1a'08+e,
but E[ex] # 0, i.e. the regressors are endogenous. Then the OLS estimator (3 is biased for
the parameter 5. We know that the bootstrap is a good way to estimate bias, so the idea is

to estimate the bias of 3 and construct a bias-adjusted estimate of 3. Explain whether or not
the non-parametric bootstrap can be used to implement this idea.

2.4 Bootstrapping conditional mean

Take the linear regression
yi = i + ei,
with E[e;|z;] = 0. For a particular value of x, the object of interest is the conditional mean

g(x) = E[y;|x]. Describe how you would use the percentile-t bootstrap to construct a confidence
interval for g(x).

2.5 Bootstrap for impulse response functions

Recall the formulation of Problem 1.12.

1. Describe in detail how to construct 95% error bands around the IRF estimates for the AR(1)
process using the bootstrap that attains asymptotic refinement.

2. It is well known that in spite of their asymptotic unbiasedness, usual estimates of impulse
response functions are significantly biased in samples typically encountered in practice. Pro-

pose a bootstrap algorithm to construct a bias corrected impulse response function for the
above ARMA(1,1) process.
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3. REGRESSION AND PROJECTION

3.1 Regressing and projecting dice
Y is a random variable that denotes the number of dots obtained when a fair six sided die is rolled.
Let

¥ Y if Y is even,
1 0 otherwise.

(i) Find the joint distribution of (X,Y).
(ii) Find the best predictor of Y| X.
(iii) Find the best linear predictor, BLP(Y'|X), of ¥ conditional on X.

(iv) Calculate E [UZp] and E [UZ; p|, the mean square prediction errors for cases (i) and (ii)
respectively, and show that [E [U% P] <E [U% I P].

3.2 Bernoulli regressor

Let x be distributed Bernoulli, and, conditional on x, y be distributed as

N (po,03) x =0,
ylz ~ { N (oD w=1.

Write out E [y|z] and E [y?|z] as linear functions of z. Why are these expectations linear in x?

3.3 Unobservables among regressors

Consider the following situation. The vector (y, z, z, w) is a random quadruple. It is known that
Ey|lx, z,w] = a + Sz + vz.

It is also known that C [z, z] = 0 and that C [w, z] > 0. The parameters «, 3 and « are not known.

A random sample of observations on (y,x,w) is available; z is not observable.

In this setting, a researcher weighs two options for estimating 8. One is a linear least squares
fit of y on x. The other is a linear least squares fit of y on (z,w). Compare these options.

REGRESSION AND PROJECTION 21



3.4

Consistency of OLS under serially correlated errors

et {y; 2 be a strictly stationary and ergodic stochastic process with zero mean and finite
variance.

(i)

3.5

t=—00

Define
C [yu ytfl]

O= "N

ur = Yt — Byi—1,
so that we can write

Yt = Byr—1 + ug.
Show that the error u; satisfies E [uy] = 0 and C [ug, y¢—1] = 0.

Show that the OLS estimator 3 from the regression of y; on y;_1 is consistent for (.

Show that, without further assumptions, w; is serially correlated. Construct an example with
serially correlated ;.

A 1994 paper in the Journal of Econometrics leads with the statement: “It is well known that
in linear regression models with lagged dependent variables, ordinary least squares (OLS)
estimators are inconsistent if the errors are autocorrelated”. This statement, or a slight
variation on it, appears in virtually all econometrics textbooks. Reconcile this statement
with your findings from parts (ii) and (iii).

Brief and exhaustive

. Comment on: “Treating regressors z in a linear mean regression y = '3 + e as random

variables rather than fixed numbers simplifies further analysis, since then the observations
(x4, y;) may be treated as IID across i”.

. A labor economist argues: “It is more plausible to think of my regressors as random rather

than fixed. Look at education, for example. A person chooses her level of education, thus it
is random. Age may be misreported, so it is random too. Even gender is random, because
one can get a sex change operation done.” Comment on this pearl.

Let (z,y,z) be a random triple. For a given real constant  a researcher wants to estimate
E [y|E [x|2] =~]. The researcher knows that E [z|z] and E [y|z] are strictly increasing and
continuous functions of z, and is given consistent estimates of these functions. Show how the
researcher can use them to obtain a consistent estimate of the quantity of interest.

'This problem closely follows J.M. Wooldridge (1998) Consistency of OLS in the Presence of Lagged Dependent
Variable and Serially Correlated Errors. Econometric Theory 14, Problem 98.2.1.
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4.

LINEAR REGRESSION

4.1

4.2

Brief and exhaustive

Consider a linear mean regression y; = x5 + e;, E [e;|x;] = 0, where z;, instead of being IID
across i, depends on ¢ through an unknown function ¢ as x; = (i) + w;, where u; are IID
independent of e;. Show that the OLS estimator of 3 is still unbiased.

Consider a model y = (« + fBx)e, where y and = are scalar observables, e is unobservable.

Let Efe|z] = 1 and V[e|z] = 1. How would you estimate («,3) by OLS? How would you
construct standard errors?

Variance estimation

. Comment on: “When one suspects heteroskedasticity, one should use White’s formula

-1 -1

Qmm Qxa:62 Q:mc

instead of conventional 2@}, since under heteroskedasticity the latter does not make sense,
because o2 is different for each observation”.

. Is there or not a fallacy in the following statement about the feasible GLS estimator?

E[BF|X} - E[(X’le)_lx’ﬂly\x} - (X’Q*X)_IX’Q*E V| X]

_ (X’Qle)_l X'01XB = p.

Evaluate the following claim: “Since for the OLS estimator 3 = (X'X) ' X’Y we have
E [B\X} = B and V [B|X] = (X'X) QX (X'X)"", we can estimate the finite sample

variance by V [BM?} = (X)) e (X'x) 7! (which, apart from the factor 7, is the
same as the White estimator of the asymptotic variance) and construct the ¢ and Wald statis-
tics using it. Thus, we do not need asymptotic theory to do OLS estimation and inference.”

Econometrician A claims: “In the IID context, to run OLS and GLS I don’t need to know
the skedastic function. See, I can estimate the conditional variance matrix {2 of the error
vector by Q) = diag {é?}?zl , where é; for i = 1,--- ,n are OLS residuals. When I run OLS, I
can estimate the variance matrix by (X’X) ™' X’QX (X’X)~"; when I run feasible GLS, I use
the formula ﬁ = (X/Q’IX)’IX/Q’1Y” Econometician B argues: “That ain’t right. In both
cases you are using only one observation, ég, to estimate the value of the skedastic function,
o?(x;). Hence, your estimates will be inconsistent and inference wrong.” Resolve this dispute.
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4.3 Estimation of linear combination

Suppose one has an IID random sample of n observations from the linear regression model
Yi = a+ Br; + vz + e,

where e; has mean zero and variance o and is independent of (z;, 2;) .

1. What is the conditional variance of the best linear conditionally (on the x; and z; observations)
unbiased estimator 6 of

‘9:@'{'6030"'76,27
where ¢, and ¢, are some given constants?
2. Obtain the limiting distribution of
Jn (E) _ 0) .

Write your answer as a function of the means, variances and correlations of x;, z; and e; and
of the constants «, 3,7, ¢z, ¢,, assuming that all moments are finite.

3. For what value of the correlation coefficient between x; and z; is the asymptotic variance
minimized for given variances of e; and x;?

4. Discuss the relationship of the result of part 3 with the problem of multicollinearity.

4.4 Incomplete regression

Consider the linear regression

yi=a; B + e, BElela] =0, E[ef|a;] =0
k1><1

Suppose that some component of the error e; is observable, so that

/
€ =2z ¥ + 1
k2><1

where z; is a vector of observables such that E [n;|z;] = 0 and E [x;2]] # 0. The researcher wants to
estimate 0 and v and considers two alternatives:

1. Run the regression of y; on z; and z; to find the OLS estimates 3 and 4 of B and 7.

2. Run the regression of y; on x; to get the OLS estimate 3 of 3, compute the OLS residuals
é; = y; — x, and run the regression of é; on z; to retrieve the OLS estimate ¥ of 7.

~ Which of the two methods would you recommend from the point of view of consistency of
B and 4?7 For the method(s) that yield(s) consistent estimates, find the limiting distribution of

V(¥ —=1).
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4.5 Generated regressor

Consider the following regression model:

Yi = Pri + az + u;,
where o and (3 are scalar unknown parameters, triples {(x;, z;,u;)}7; are IID, u; has zero mean
and unit variance, pairs (z;,%;) are independent of u; with E [27] = 42 # 0, E[2?] = 72 # 0,

E [zizi] = 7,. # 0. Suppose we are given an estimator & of « independent of all u; and the limiting
distribution of \/n (& — ) is N(0,1) as n — co. Define the estimator 3 of 3 by

n -1 n
3= <Z xf) ZZL‘Z (yi — az;) .
i=1 i=1

Obtain the asymptotic distribution of B as n — oo.

4.6 Long and short regressions

Take the true model Y = X103, + X205 + ¢, E[e| X1, X2] = 0. Suppose that 3, is estimated only
by regressing Y on X only. Find the probability limit of this estimator. What are the conditions
when it is consistent for 37

4.7 Ridge regression

In the standard linear mean regression model, one estimates k x 1 parameter § by
B=(X'X+AL) XY,

where A > 0 is a fixed scalar, I is a k x k identity matrix, X is n X k and Y is n x 1 matrices of
data.

1. Find E [B | X } Is 8 conditionally unbiased? Is it unbiased?

2. Find plimf3. Is 3 consistent?

n—oo
3. Find the asymptotic distribution of B
4. From your viewpoint, why may one want to use 3 instead of the OLS estimator 37 Give

conditions under which [ is preferable to 8 according to your criterion, and vice versa.
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4.8 Expectations of White and Newey—\West estimators in 11D setting

Suppose one has a random sample of n observations from the linear conditionally homoskedastic
regression model

yi=zi8+e;, BElelr]=0 E [ef\xz] = o2,
Let B be the OLS estimator of 3, and let f/ﬁ and V@ be the White and Newey—West estimators of

the asymptotic variance matrix of 3. Find E[VB]X | and E[VB|X |, where X is the matrix of stacked
regressors for all observations.

4.9 Exponential heteroskedasticity

Let y be scalar and x be k x 1 vector random variables. Observations (y;, ;) are drawn at random
from the population of (y,z). You are told that E [y|x] = 2’3 and that V [y|z] = exp(2’ + «), with
(8, @) unknown. You are asked to estimate f3.

1. Propose an estimation method that is asymptotically equivalent to GLS that would be com-
putable were V [y|z] fully known.

2. In what sense is the feasible GLS estimator of part 1 efficient? In which sense is it inefficient?

4.10 OLS and GLS are identical

Let Y = X(B+v)+u, where X isn x k, Y and u are n x 1, and § and v are k x 1. The parameter
of interest is 8. The properties of (Y, X,u,v) are: E[u|X] = E[|X] = 0, E[uw/|X] = o%I,,
E[v|X] =T, E[uw'|X] =0. Y and X are observable, while u and v are not.

1. What are E[Y|X] and V[Y|X]? Denote the latter by ¥. Is the environment homo- or
heteroskedastic?

2. Write out the OLS and GLS estimators B and 8 of 8. Prove that in this model they are
identical. Hint: First prove that X’é = 0, where é is the n x 1 vector of OLS residuals. Next
prove that X’¥71é = 0. Then conclude. Alternatively, use formulae for the inverse of a sum
of two matrices. The first method is preferable, being more “econometric”.

3. Discuss benefits of using both estimators in this model.

4.11 OLS and GLS are equivalent

Let us have a regression written in a matrix form: Y = XG+wu, where X isnx k, Y and u are n x 1,
and ( is k x 1. The parameter of interest is 5. The properties of u are: E[u|X] = 0, E [uv/|X] = X.
Let it be also known that XX = X© for some k x k nonsingular matrix ©.
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1. Prove that in this model the OLS and GLS estimators B and B of 3 have the same finite
sample conditional variance.

2. Apply this result to the following regression on a constant:
Yi = o+ Uy,

where the disturbances are equicorrelated, that is, E [u;] = 0, V [u;] = 02 and C [u;, uj] = po?
for i # j.

4.12 Equicorrelated observations

Suppose x; = 0 + u;, where E [u;] = 0 and

1 ifi=j
E ] =
] {7 ifi#
withi,7=1,--- ,n. Isz, = % (x1 + -+ xy,) the best linear unbiased estimator of §7 Investigate

Ty, for consistency.

4.13 Unbiasedness of certain FGLS estimators

Show that

(a) for a random variable z, if z and —z have the same distribution, then E [z] = 0;

(b) for a random vector ¢ and a vector function ¢ (¢) of ¢, if € and —e have the same distribution
and q (—e) = —q(¢) for all €, then E[q (¢)] = 0.

Consider the linear regression model written in matrix form:
y=xp+¢& E[EX]=0, E [55’\)(’] =X.
Let 3 be an estimate of ¥ which is a function of products of least squares residuals, i.e. & =

F(MEE'M) = H (EE) for M =T — X (X'X)" " X'. Show that if £ and —€ have the same condi-
tional distribution (e.g. if £ is conditionally normal), then the feasible GLS estimator

Bp= (X’i*l)c)*l XSy

is unbiased.

EQUICORRELATED OBSERVATIONS 27



28

LINEAR REGRESSION



5. NONLINEAR REGRESSION

5.1 Local and global identification

1. Suppose we regress y on scalar x, but x is distributed only at one point (that is,
Pr{r=a} =1

for some a). When does the identification condition hold and when does it fail if the regression
is linear and has no intercept? If the regression is nonlinear? Provide both algebraic and
intuitive/graphical explanations.

2. Consider the nonlinear regression E[y|z] = B, + B3z, where 85 # 0 and V[z] # 0. Which
identification condition for (3;,3,)" fails and which does not?

5.2 Exponential regression

Suppose you have the homoskedastic nonlinear regression
y=cxp(a+pr)+e, Blefz] =0, Ble?|z] =0

and IID data {(z;,y;)};—; . Let the true § be 0, and = be distributed standard normal. Investigate
the problem for local identifiability, and derive the asymptotic distribution of the NLLS estimator
of (e, B). Describe a concentration method algorithm giving all formulas (including standard errors
that you would use in practice) in explicit forms.

5.3 Power regression

Suppose you have the nonlinear regression
Y=« (1+xﬂ) +e, Elelz]=0

and IID data {(x,y;)};—, . How would you test Hy : o = 0 properly?

5.4 Transition regression

Given the random sample {(x;,y;)};—; , consider the nonlinear regression

By
1 + 631‘

y=p0]+ +e, Elelz] =0.
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1. Describe how to test using the t-statistic if the marginal influence of x on the conditional
mean of y, evaluated at x = 0, equals 1.

2. Describe how to test using the Wald statistic if the regression function does not depent on z.
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6. EXTREMUM ESTIMATORS

6.1 Regression on constant

Consider the following model:
yi:ﬂ—i_eia i:17"'7n7

where all variables are scalars. Assume that {e;} are ITD with E[e;] = 0, E[e?] = 3%, E[e] = 0 and
E[e}] = k. Consider the following three estimators of /3:

7
1 n
By = - ;yia
1=

. 1 &
B9 = arg min {log b+ — (yi — b)2} ,
b n °

Derive the asymptotic distributions of these three estimators. Which of them would you prefer most
on the asymptotic basis? Bonus question: what was the idea behind each of the three estimators?

6.2 Quadratic regression

Consider a nonlinear regression model
yi = (Bo + i) + us,

where we assume:

. e TR — 1 1
(A) Parameter space is B = [—3,+3].

(B) {u;} are IID with E[u;] = 0, V [u;] = o2.
(C) {z;} are IID with uniform distribution over [1,2], distributed independently of {u;}. In
particular, this implies E [:L';l} =In2 and E[z]] = 1_L~(2T+1 — 1) for integer r # —1.

Define two estimators of 3:
. 2
1. 3 minimizes S,(3) = > 1, {yi - (B+ x@)Q] over B.

2. B minimizes W, (8) = 3.1, {(ﬂy—lQ +In(6+ :L’Z)Q} over B.

+ ;)

For the case 3y = 0, obtain asymptotic distributions of B and 3. Which one of the two do you
prefer on the asymptotic basis?
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6.3 Nonlinearity at left hand side

An IID sample {x;,y;};; is available for the nonlinear model
(y+a)’=Bz+e, Blela] =0, Ble’ja] =07

where the parameters o and (§ are scalars. Show that the NLLS estimator of a and 3

(0)-wess )

is in general inconsistent. What feature makes the model differ from a nonlinear regression where
the NLLS estimator is consistent?

6.4 Least fourth powers

Consider the linear model

y =Pz +e,
where all variables are scalars, x and e are independent, and the distribution of e is symmetric
around 0. For an IID sample {x;, y;}1", consider the following extremum estimator of [3:

Derive the asymptotic properties of [3, paying special attention to the identification condition.
Compare this estimator with the OLS estimator in terms of asymptotic efficiency for the case when
x and e are normally distributed.

6.5 Asymmetric loss

Suppose that (z;,y;) is an IID sequence satisfying for each i
yi = a+ 2,8+ e,

where e; is independent of x;, a random k X 1 vector. Suppose also that all moments of x; and e;
are finite and that E [x;2}] is nonsingular. Suppose that & and § are defined to be the values of «
and S that minimize

1 n
=> oy —a—aip)

n“
=1

over some set © C RF¥*1, where for some 0 < v < 1

3 .
] oyu ifu>0,
p(u){ —(1 =) if u <0.

Describe the asymptotic behavior of the estimators & and B as n — oo. If you need to make
additional assumptions be sure to specify what these are and why they are needed.
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7. MAXIMUM LIKELIHOOD ESTIMATION

7.1 MLE for three distributions

1. A random variable X is said to have a Pareto distribution with parameter A, denoted X ~
Pareto()), if it is continuously distributed with density

Az~ (A FD), if o> 1,
Fx(lA) = { 0, otherwise.
A random sample z1,- -, x, from the Pareto(\) population is available.

(i) Derive the ML estimator A of A, prove its consistency and find its asymptotic distribution.

(ii) Derive the Wald, Likelihood Ratio and Lagrange Multiplier test statistics for testing the
null hypothesis Hy : A = \¢ against the alternative hypothesis H, : A # Ag. Do any of
these statistics coincide?

2. Let x1,--- ,x, be a random sample from A (i, u?). Derive the ML estimator i of y and prove
its consistency.

3. Let 1, -+ ,x, be a random sample from a population of x distributed uniformly on |0, 6].
Construct an asymptotic confidence interval for # with significance level 5% by employing a
maximum likelihood approach.

7.2 Comparison of ML tests

IBerndt and Savin in 1977 showed that W > LR > LM for the case of a multivariate regression
model with normal disturbances. Ullah and Zinde-Walsh in 1984 showed that this inequality is
not robust to non-normality of the disturbances. In the spirit of the latter article, this problem
considers simple examples from non-normal distributions and illustrates how this conflict among
criteria is affected.

1. Consider a random sample x1,--- ,x, from a Poisson distribution with parameter A. Show
that testing A = 3 versus A # 3 yields W > LM for z <3 and W < LM for T > 3.

2. Consider a random sample z1,--- ,z, from an exponential distribution with parameter 6.
Show that testing 8 = 3 versus 6 # 3 yields W > LM for 0 < z < 3 and W < LM for & > 3.

3. Consider a random sample z1,--- ,z, from a Bernoulli distribution with parameter 6. Show
that for testing 6 = % versus 6 # %, we always get W > LM. Show also that for testing 6 = %
Versu807é%,wegetW§£M for%Sfﬁ%andWZﬁMforO<i;§%or%§a‘c§l.

'This problem closely follows Badi H. Baltagi (2000) Conflict Among Criteria for Testing Hypotheses: Examples
from Non-Normal Distributions. Econometric Theory 16, Problem 00.2.4.
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7.3

Invariance of ML tests to reparametrizations of null

2Consider the hypothesis

Hy: h(0) =0,

where h : R¥ — RY. Tt is possible to recast the hypothesis Hy in an equivalent form

Hp:g(0) =0,

where g : R¥ — R is such that g(6) = f(h(#)) — f(0) for some one-to-one function f : R? — R9.

1.

2.

.4

Show that the LR statistic is invariant to such reparametrization.

Show that the LM statistic may or may not be invariant to such reparametrization depending
on how the information matrix is estimated.

. Show that the W statistic is invariant to such reparametrization when f is linear, but may

not be when f is nonlinear.

. Suppose that § € R? and reparametrize Hy : 01 = 03 as (61 — a) / (62 — a) = 1 for some a.

Show that the W statistic may be made as close to zero as desired by manipulating ov. What
value of « gives the largest possible value to the W statistic?

Individual effects

Suppose {(z;, y;) };, is a serially independent sample from a sequence of jointly normal distributions
with E[z;] = BEly] = p;, Vizi = V]y] = o2, and C[zy,y;] = 0 (i.e., z; and y; are independent
with common but varying means and a constant common variance). All parameters are unknown.
Derive the maximum likelihood estimate of 02 and show that it is inconsistent. Explain why. Find
an estimator of o2 which would be consistent.

7.5

1.

Misspecified maximum likelihood

Suppose that the nonlinear regression model

Ely|z] = g (z,8)

is estimated by maximum likelihood based on the conditional homoskedastic normal distrib-
ution, although the true conditional distribution is from a different family. Provide a simple
argument why the ML estimator of § is nevertheless consistent.

. Suppose we know the true density f(z|€) up to the parameter 0, but instead of using log f(z|q)

in the objective function of the extremum problem which would give the ML estimate, we
use f(z|q) itself. What asymptotic properties do you expect from the resulting estimator of
07 Will it be consistent? Will it be asymptotically normal?

2This problem closely follows discussion in the book Ruud, Paul (2000) An Introduction to Classical Econometric
Theory; Oxford University Press.
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7.6 Does the link matter?

3Consider a binary random variable y and a scalar random variable x such that
P{y = 1|z} = F (a + fz),

where the link F'(-) is a continuous distribution function. Show that when = assumes only two
different values, the value of the log-likelihood function evaluated at the maximum likelihood esti-
mates of a and [ is independent of the form of the link function. What are the maximum likelihood
estimates of o and 37

7.7 Nuisance parameter in density

/

7)" have a joint density of the form

f(Z100) = fe(Y]X, 70, 00) fm(X]0),

where 6y = (7, 00), both v, and &g are scaleu: parameters, and f. and f,, denote the conditional
and marginal distributions, respectively. Let 0c = (Y., 6.) be the conditional ML estimators of
and &g, and 6,, be the marginal ML estimator of §5. Now define

Let z; = (yi, x

’3/ = arg m’?xz In fc(yZ’:EZv v 8771))
%

a two-step estimator of subparameter v, which uses marginal ML to obtain a preliminary estimator
of the “nuisance parameter” 6g. Find the asymptotic distribution of 4. How does it compare to
that for 4,7 You may assume all the needed regularity conditions for consistency and asymptotic
normality to hold.

Hint: You need to apply the Taylor’s expansion twice, i.e. for both stages of estimation.

7.8 MLE versus OLS

Consider the model where y; is regressed only on a constant:
Yyi=a+e, t=1...,n,

where e; conditioned on x; is distributed as N (0, w%aQ); x;’s are drawn from a population of some
random variable  that is not present in the regression; o2 is unknown; y;’s and x;’s are observable,
e;’s are unobservable; the pairs (y;, z;) are IID.

1. Find the OLS estimator &prs of a. Is it unbiased? Consistent? Obtain its asymptotic
distribution. Is &prg the best linear unbiased estimator for o7

2. Find the ML estimator &psr, of a and derive its asymptotic distribution. Is &z, unbiased? Is
a sz asymptotically more efficient than éors? Does your conclusion contradicts your answer
to the last question of part 17 Why or why not?

3This problem closely follows Joao M.C. Santos Silva (1999) Does the link matter? Econometric Theory 15,
Problem 99.5.3.
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7.9 MLE versus GLS

Consider a normal linear regression model in which there is conditional heteroskedasticity of the
following form: conditional on x the dependent variable y is normally distributed with

Elylz] = '8, Vlyla] =o® (/8)".

Suppose available is an IID sample (z1,%1), -, (Zn,yn). Describe a feasible generalized least
squares estimator for § based on the OLS estimator for §. Show that this GLS estimator is
asymptotically less efficient than the maximum likelihood estimator. Explain the source of ineffi-
ciency.

7.10 MLE in heteroskedastic time series regression

Assume that data (y;, x¢), t =1,2,--- T, are stationary and ergodic and generated by
Yt = a + Bry + uy,

where ug|zy ~ N(0,02), 21 ~ N(0,v), E[ugus|zs, 5] = 0, t # s. Explain, without going into deep
math, how to find estimates and their standard errors for all parameters when:

1. The entire 07 as a function of z; is fully known.

2. The values of 02 at t = 1,2,--- , T are known.
3. Tt is known that o7 = (0 + éx¢)2, but the parameters 6 and § are unknown.
4. Tt is known that o7 = 60 + 6u%_1, but the parameters 6 and 6 are unknown.

5. It is only known that o? is stationary.

7.11 Maximum likelihood and binary variables

Suppose Z and Y are discrete random variables taking values 0 or 1. The distribution of Z and Y
is given by
%

Z =01
Here o and v are scalar parameters of interest.

1. Find the ML estimator of («, ) (giving an explicit formula whenever possible) and derive its
asymptotic distribution.

2. Suppose we want to test Hg : a = - using the asymptotic approach. Derive the ¢ test statistic
and describe in detail how you would perform the test.

3. Suppose we want to test Hy : o = % using the bootstrap approach. Derive the LR (likelihood
ratio) test statistic and describe in detail how you would perform the test.
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7.12  Maximum likelihood and binary dependent variable

Suppose y is a discrete random variable taking values 0 or 1 representing some choice of an indi-
vidual. The distribution of y given the individual’s characteristic x is

evr

P{y = 1|z} = Tr e’

where « is the scalar parameter of interest. The data {y;,x;}, i = 1,...,n, are IID. When deriving
various estimators, try to make the formulas as explicit as possible.

1. Derive the ML estimator of v and its asymptotic distribution.

2. Find the (nonlinear) regression function by regressing y on z. Derive the NLLS estimator of
~ and its asymptotic distribution.

3. Show that the regression you obtained in part 2 is heteroskedastic. Setting weights w(z) equal
to the variance of y conditional on z, derive the WNLLS estimator of v and its asymptotic
distribution.

4. Write out the systems of moment conditions implied by the ML, NLLS and WNLLS problems
of parts 1-3.

5. Rank the three estimators in terms of asymptotic efficiency. Do any of your findings appear
unexpected? Give intuitive explanation for anything unusual.

7.13 Bootstrapping ML tests

1. For the likelihood ratio test of Hy : g(0) = 0, we use the statistic

LR =2 4, — 4y, .
(m (@) = onas | @)

Write out the formula (no need to describe the entire algorithm) for the bootstrap pseudo-
statistic LR™.

2. For the Lagrange Multiplier test of Hy : g(6) = 0, we use the statistic
1 SR\~ R
= — i, 0 ) 7! ( i, 0 ) .
EM n ; S (Z ML ; S|z ML

Write out the formula (no need to describe the entire algorithm) for the bootstrap pseudo-
statistic LM™.

7.14  Trivial parameter space

Consider a parametric model with density f(X|0p), known up to a parameter 6y, but with © = {6, },
i.e. the parameter space is reduced to only one element. What is an ML estimator of 0y, and what
are its asymptotic properties?
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8. INSTRUMENTAL VARIABLES

8.1 Inappropriate 2SLS

Consider the model
Yi = azi? +u;, 2z =Tmx; 4+ v,

where (z;,u;,v;) are IID, E[u;|2;] = E [vi|z;] = 0 and V [(ul> |mz} = 3, with ¥ unknown.
i
1. Show that o, m and ¥ are identified. Suggest analog estimators for these parameters.
2. Consider the following two stage estimation method. In the first stage, regress z; on x; and
define 2; = 7rz;, where # is the OLS estimator. In the second stage, regress y; in 22 to obtain

the least squares estimate of . Show that the resulting estimator of « is inconsistent.

3. Suggest a method in the spirit of 2SLS for estimating o consistently.

8.2 Inconsistency under alternative

Suppose that
y=a+ pr+u,

where u is distributed A(0,0?) independently of x. The variable x is unobserved. Instead we
observe z =  + v, where v is distributed N(0, n?) independently of & and u. Given a sample of size
n, it is proposed to run the linear regression of y on z and use a conventional t-test to test the null
hypothesis 6 = 0. Critically evaluate this proposal.

8.3 Optimal combination of instruments

Suppose you have the following regression specification:
y=pr+e,
where e is correlated with .

1. You have instruments z and ¢ which are mutually uncorrelated. What are their necessary
properties to provide consistent IV estimators 3, and 3.7 Derive the asymptotic distributions
of these estimators.

2. Calculate the optimal IV estimator as a linear combination of Bz and Bg-

3. You notice that Bz and BC are not that close together. Give a test statistic which allows you
to decide if they are estimating the same parameter. If the test rejects, what assumptions
are you rejecting?
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8.4 Trade and growth

In the paper “Does Trade Cause Growth?” (American Economic Review, June 1999), Jeffrey
Frankel and David Romer study the effect of trade on income. Their simple specification is

logY; = a+ BT + yW; + €4, (8.1)

where Y; is per capita income, 7T; is international trade, W; is within-country trade, and ¢; reflects
other influences on income. Since the latter is likely to be correlated with the trade variables,
Frankel and Romer decide to use instrumental variables to estimate the coefficients in (8.1). As
instruments, they use a country’s proximity to other countries P; and its size .5;, so that

Ty =4 + 6P + 6; (8.2)

and
Wi =n+ AS; + v, (8.3)

where 6; and v; are the best linear prediction errors.

1. As the key identifying assumption, Frankel and Romer use the fact that countries’ geographi-
cal characteristics P; and S; are uncorrelated with the error term in (8.1). Provide an economic
rationale for this assumption and a detailed explanation how to estimate (8.1) when one has
data on Y, T, W, P and S for a list of countries.

2. Unfortunately, data on within-country trade are not available. Determine if it is possible to
estimate any of the coefficients in (8.1) without further assumptions. If it is, provide all the
details on how to do it.

3. In order to be able to estimate key coefficients in (8.1), Frankel and Romer add another
identifying assumption that P; is uncorrelated with the error term in (8.3). Provide a detailed
explanation how to estimate (8.1) when one has data on Y, T, P and S for a list of countries.

4. Frankel and Romer estimated an equation similar to (8.1) by OLS and IV and found out
that the IV estimates are greater than the OLS estimates. One explanation may be that the
discrepancy is due to a sampling error. Provide another, more econometric, explanation why
there is a discrepancy and what the reason is that the IV estimates are larger.

8.5 Consumption function

Consider the consumption function
Cy =a+ \Y; + ey, (84)

where (Y is aggregate consumption at ¢, and Y; is aggregate income at ¢t. The ordinary least squares
(OLS) estimation applied to (8.4) may give an inconsistent estimate of the marginal propensity to
consume (MPC) A. The remedy suggested by Haavelmo lies in treating the aggregate income as
endogenous:

Y =Ci + I + Gy, (8.5)

where I; is aggregate investment at t, and Gy is government consumption at ¢, and both variables
are exogenous. Assume that the shock e; is mean zero IID across time, and all variables are jointly
stationary and ergodic. A sample of size T containing Y;, Cy, I;, and Gy is available.
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1. Show that the OLS estimator of A is indeed inconsistent. Compute the amount and direction
of this inconsistency.

2. Econometrician A intends to estimate (a, )’ by running 2SLS on (8.4) using the instrumental
vector (1,1;, Gy)' . Econometrician B argues that it is not necessary to use this relatively com-
plicated estimator since running simple IV on (8.4) using the instrumental vector (1, I; + G¢)’
will do the same. Is econometrician B right?

3. Econometrician C regresses Y; on a constant and C}, and obtains corresponding OLS esti-
mates (éo,@c) Econometrician D regresses Y; on a constant, Cy, I, and Gt and obtains
corresponding OLS estimates (qf)o, qbc, d)], qu) What values do parameters GC and gbc con-
sistently estimate?
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9. GENERALIZED METHOD OF MOMENTS

9.1 GMM and chi-squared

Let 2z be distributed as x?(1). Then the moment function

— Z—4
m(27Q) - 22_612—261

has mean zero for ¢ = 1. Describe efficient GMM estimation of # = 1 in details.

9.2 Improved GMM

Consider GMM estimation with the use of the moment function

m(z,y,q) = < x_q)-

Y

Determine under what conditions the second restriction helps in reducing the asymptotic variance
of the GMM estimator of 6.

9.3 Nonlinear simultaneous equations

Let
Yi = Br; + u;, sz‘:’yy?Jrvi, 1=1,...,n,

where z;’s and y;’s are observable, but u;’s and v;’s are not. The data are IID across 1.

1. Suppose we know that E[u;] = E[v;] = 0. When are § and + identified? Propose analog
estimators for these parameters.

2. Let also be known that E [u;v;] = 0.

(a) Propose a method to estimate 3 and «y as efficiently as possible given the above informa-
tion. Your estimator should be fully implementable given the data {z;,y;}7,. What is the
asymptotic distribution of your estimator?

(b) Describe in detail how to test Hy : § = 7 = 0 using the bootstrap approach and the Wald
test statistic.

(c) Describe in detail how to test Hy : E[w] = E[v;] = E[u;v;] = 0 using the asymptotic
approach.
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9.4 Trinity for GMM

Derive the three classical tests (W, LR, LM) for the composite null
Hy:0€09={60:h(0) =0},

where h : RF — RY, for the efficient GMM case. The analog for the Likelihood Ratio test will be
called the Distance Difference test. Hint: treat the GMM objective function as the “normalized
loglikelihood”, and its derivative as the “sample score”.

9.5 Testing moment conditions

In the linear model
Yi = i+ ui

under random sampling and the unconditional moment restriction E [z;u;] = 0, suppose you wanted
to test the additional moment restriction E [xlu?] = 0, which might be implied by conditional
symmetry of the error terms u;.

A natural way to test for the validity of this extra moment condition would be to efficiently
estimate the parameter vector 5 both with and without the additional restriction, and then to check
whether the corresponding estimates differ significantly. Devise such a test and give step-by-step
instructions for carrying it out.

9.6 Instrumental variables in ARMA models

1. Consider an AR(1) model z; = pxy_1 + e; with Efel ;1] =0, E [et2|lt,1] =02, and |p| < 1.
We can look at this as an instrumental variables regression that implies, among others, instru-
ments x;_1, Tt—2, - -+ . Find the asymptotic variance of the instrumental variables estimator
that uses instrument z;_;, where j = 1,2,--- . What does your result suggest on what the
optimal instrument must be?

2. Consider an ARM A(1,1) model y; = ay;—1 + e —0ep—1 with |a] < 1, || < 1 and E [e] ;1] =
0. Suppose you want to estimate a by just-identifying IV. What instrument would you use
and why?

0.7 Interest rates and future inflation

Frederic Mishkin in early 90’s investigated whether the term structure of current nominal interest
rates can give information about future path of inflation. He specified the following econometric
model:

ﬂ{tn - 77? = Qmn + ﬁm,n (Z;n - Z?) + n:tn’nv By [77?’”] =0, (9'1)
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where 7F is k-periods-into-the-future inflation rate, if is the current nominal interest rate for k-
periods-ahead maturity, and n;"" is the prediction error.

1. Show how (9.1) can be obtained from the conventional econometric model that tests the
hypothesis of conditional unbiasedness of interest rates as predictors of inflation. What re-
striction on the parameters in (9.1) implies that the term structure provides no information
about future shifts in inflation? Determine the autocorrelation structure of 7;"".

2. Describe in detail how you would test the hypothesis that the term structure provides no
information about future shifts in inflation, by using overidentifying GMM and asymptotic
theory. Make sure that you discuss such issues as selection of instruments, construction of
the optimal weighting matrix, construction of the GMM objective function, estimation of
asymptotic variance, etc.

3. Describe in detail how you would test for overidentifying restrictions that arose from your set
of instruments, using the nonoverlapping blocks bootstrap approach.

4. Mishkin obtained the following results (standard errors in parentheses):

m, n Qo Bm.n t-test of  t-test of
(months) Brmn =0 Bpn=1
3,1 0.1421  —-0.3127  —0.70 2.92
(0.1851) (0.4498)

6,3 0.0379  0.1813 0.33 1.49
(0.1427)  (0.5499)

9,6 0.0826  0.0014 0.01 3.71

(0.0647)  (0.2695)

Discuss and interpret the estimates and results of hypotheses tests.

9.8 Spot and forward exchange rates

Consider a simple problem of prediction of spot exchange rates by forward rates:
Ste1— St =+ B(fe — 1) +err, Belea] =0, By lef,] =07,

where s; is the spot rate at t, f; is the forward rate for one-month forwards at ¢, and E; denotes
expectation conditional on time t information. The current spot rate is subtracted to achieve
stationarity. Suppose the researcher decides to use ordinary least squares to estimate o and [.
Recall that the moment conditions used by the OLS estimator are

Eler1] =0, B[(fi —st) erpa] = 0. (9.2)
1. Beside (9.2), there are other moment conditions that can be used in estimation:

E [(ft—k - Stfk) €t+1] =0,

because f;_p — s¢—r belongs to information at time ¢ for any k& > 1. Consider the case k = 1
and show that such moment condition is redundant.
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2. Beside (9.2), there is another moment condition that can be used in estimation:

E[(ft — st) (fi+1 — ft)] =0,

because information at time ¢ should be unable to predict future movements in forward rates.
Although this moment condition does not involve « or (3, its use may improve efficiency
of estimation. Under what condition is the efficient GMM estimator using both moment
conditions as efficient as the OLS estimator? Is this condition likely to be satisfied in practice?

9.9 Minimum Distance estimation

Consider a similar to GMM procedure called the Minimum Distance (MD) estimation. Suppose
we want to estimate a parameter vy, € I implicitly defined by 6o = s(7), where s : RF — Rf with
¢ > k, and available is an estimator 6 of 6y with asymptotic properties

0200, v (0-00) SN (0,7).

Also suppose that available is a symmetric and positive definite estimator Vg) of V. The MD
estimator is defined as

fup = argmin (6 s() W (6 s(7).

where W is some symmetric positive definite data-dependent matrix consistent for a symmetric
positive definite weight matrix W. Assume that I" is compact, s(7y) is continuously differentiable
with full rank matrix of derivatives S(v) = 9s(y)/9v' on I, 7, is unique and all needed moments
exist.
1. Give an informal argument for consistency of 4,,;p. Derive the asymptotic distribution of
YMD-
2. Find the optimal choice for the weight matrix W and suggest its consistent estimator.

3. Develop a specification test, i.e. of the hypothesis Hy : 3y, such that 6y = s(vg)-

4. Apply parts 1-3 to the following problem. Suppose that we have an autoregression of order
2 without a constant term:
(1= pL)*y = e,
where |p| < 1, L is the lag operator, and ¢; is IID(0, o2). Written in another form, the model
is
Yt = O1yr—1 + O2yr—2 + &4,
and (01, 02)" may be efficiently estimated by OLS. The target, however, is to estimate p and
verify that both autoregressive roots are indeed equal.

9.10 Issues in GMM

1. Let it be known that the scalar random variable w has mean p and that its fourth central
moment equals three times its squared variance (like for a normal random variable). Formulate
a system of moment conditions for GMM estimation of p.
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2. Suppose an econometrician estimates parameters of a time series regression by GMM after
having chosen an overidentifying vector of instrumental variables. He performs the overiden-
tification test and claims: “A big value of the J-statistic is an evidence against validity of the
chosen instruments”. Comment on this claim.

3. Suppose that among the selected instruments for GMM estimation, there are irrelevant ones.
What are the consequences of this for the GMM use?

4. Let g(z,q) be a function such that dimensions of g and ¢ are identical, and let z1,--- , 2, be a
random sample. Note that nothing is said about moment conditions. Define @ as the solution
to > 1 g(zi,q) = 0. What is the probability limit of 7 What is the asymptotic distribution

~

of 07

5. Let the moment condition be E [m(z,0)] = 0, where § € R*¥ m is an £ x 1 moment function,
and ¢ > k. Suppose we rewrite the moment conditions as E[Cm(z,0)] = 0, where C is a
nonsingular £ x ¢ matrix of constants which does not depend on 6. Is the efficient GMM
estimator invariant to such linear transformations of moment conditions?

9.11 Bootstrapping GMM

1. We know that one should use recentering when bootstrapping a GMM estimator. We also
know that the OLS estimator is one of GMM estimators. However, when we bootstrap the
OLS estimator, we calculate [3* = (X¥X*)"LX*Y* at each bootstrap repetition, and do not
recenter. Resolve the contradiction.

2. The Distance Difference test statistic for testing the composite null Hy : h(0) = 0 is defined
as

DD =n Lf{?qlfl OQn(Q) — mqinQn(Q)] ,

where Q,(q) is the GMM objective function

Qula) = (% Zmz@-,q)) £t (% Zmz@-,q)) ,
i=1 i=1

where 3 consistently estimates ¥ = B [m (z,0) m (2,0)'] . It is known that, as the sample
size n tends to infinity, DD 4, thm( Q) Write out a detailed formula (no need to describe the
entire bootstrap algorithm) for the bootstrap statistic DD*.

0.12 Efficiency of MLE in GMM class

We proved that the ML estimator of a parameter is efficient in the class of extremum estimators
of the same parameter. Prove that it is also efficient in the class of GMM estimators of the same
parameter.
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10. PANEL DATA

10.1 Alternating individual effects

Suppose that the unobservable individual effects in a one-way error component model are different
across odd and even periods:

Yit = ,uio + a8+ vy for odd ¢, %)
yit = pF + 2,8+ vy for even t,

wheret =1,2,--- ,27T,4i=1,---n. Note that there are 2T observations for each individual. We will
call (¥) “alternating effects” specification. As usual, we assume that vy are I1D(0,02) independent
of x’s.

1. There are two ways to arrange the observations: (a) in the usual way, first by individual, then
by time for each individual; (b) first all “odd” observations in the usual order, then all “even”
observations, so it is as though there are 2N “individuals” each having T observations. Find
out the (Q-matrices that wipe out individual effects for both arrangements and explain how
they transform the original equations. For the rest of the problem, choose the @)-matrix to
your liking.

2. Treating individual effects as fixed, describe the Within estimator and its properties. Develop
an F-test for individual effects, allowing heterogeneity across odd and even periods.

3. Treating individual effects as random and assuming their independence of x’s, v’s and each

other, propose a feasible GLS procedure. Consider two cases: (a) when the variance of

“alternating effects” is the same: V [,uzo] =V [,uf] = oi, (b) when the variance of “alternating

effects” is different: V [MZO] =02,V [,uf] = 0%, 04 # 0%,

10.2  Time invariant regressors

Consider a panel data model
yit:x;tﬁ+zi7+ﬂi+vitv i:1727"'7n7 t:1a2a"'7Ta
where n is large and 7 is small. One wants to estimate 3 and ~.

1. Explain how to efficiently estimate § and v under (a) fixed effects, (b) random effects, when-
ever it is possible. State clearly all assumptions that you will need.

2. Consider the following proposal to estimate . At the first step, estimate the model y;; =
@, B+ m; +vi by the least squares dummy variables approach. At the second step, take these
estimates 7; and estimate the coefficient of the regression of 7; on z;. Investigate the resulting
estimator of 7y for consistency. Can you suggest a better estimator of 7
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10.3 Differencing transformations

1. In a one-way error component model with fixed effects, instead of using individual dummies,
one can alternatively eliminate individual effects by taking the first differencing (FD) trans-
formation. After this procedure one has n(T — 1) equations without individual effects, so the
vector (3 of structural parameters can be estimated by OLS. Evaluate this proposal.

2. Recall the standard dynamic panel data model. The individual heterogeneity may be removed
not only by first differencing, but also by, for example, subtracting the equation corresponding
to t = 2 from each other equation for the same individual. What do you think of this proposal?

10.4 Nonlinear panel data model

An IID sample {z;, y;};-, is available for the nonlinear model
(y+a)® =Bz +e,

where e is independent of z, and the parameters a and [ are scalars. We now know (see Assignment
#1) that the NLLS estimator of « and 3

() wese )

is in general inconsistent.

1. Propose a consistent CMM estimator of o and 3 and derive its asymptotic distribution. [Hint:
select a just identifying set of instruments which you would use if the left hand side of the
equation was not squared.]

2. Now suppose that there is a panel {z, yit }1; tT:1> where n is large and 7' is small, so that there
is an opportunity to control individual heterogeneity. Write out a one-way error component
model assuming the same functional form but allowing for individual heterogeneity in the
form of random effects. Using analogy with the theory of linear panel regression, propose a
multistep procedure of estimating a and § adapting the estimator you used in part 1 to the
panel data environment.

10.5 Durbin—Watson statistic and panel data

IConsider the standard one-way error component model with random effects:

yit:x;t/@+ﬂi+vit, izl?"'an? t:17"‘7T7 (101)

where 3 is k x 1, u; are random individual effects, p; ~ 11 D(O,ai), vit are idiosyncratic shocks,

v ~ I1D(0, a%), and p; and vy are independent of x;; for all ¢ and ¢ and mutually. The equations

'This problem is a part of S. Anatolyev (2002, 2003) Durbin-Watson statistic and random individual effects.
Econometric Theory 18, Problem 02.5.1, 1273-1274, and 19, Solution 02.5.2, 882-883.
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are arranged so that the index ¢ is faster than the index ¢. Consider running OLS on the original
regression (10.1) and running OLS on the GLS-transformed regression

vit — 7. = (@ — 72.)' B+ (1 — *)py + vig — 70, i=1,---,n, t=1,-- T, (10.2)

where 7 is a consistent (asn — oo and T stays fixed) estimate of 7 = 1—0,/, /02 + ToZ. When each

OLS estimate is obtained using a typical regression package, the Durbin-Watson (DW) statistic is
provided among the regression output. Recall that if é1, éa, -+, énx_1, én iS a series of regression
residuals, then the DW statistic is

N 2
22 (&j —€j-1)
DW ==

é4

o8

2
1 J

J
1. Derive the probability limits of the two DW statistics, as n — oo and T stays fixed.

2. Using the obtained result, propose an asymptotic test for individual effects based on the DW
statistic [Hint: That the errors are estimated does not affect the asymptotic distribution of
the DW statistic. Take this for granted.]
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11. NONPARAMETRIC ESTIMATION

11.1 Nonparametric regression with discrete regressor

Let (x;,vi), i = 1,--- ,n be an IID sample from the population of (z,y), where = has a discrete
distribution with the support a(yy,- -+, ax), where a1y < --- < a). Having written the conditional
expectation E [y|3: =a j)] in the form that allows to apply the analogy principle, propose an analog
estimator g; of g; = Eiy[x = a(j)] and derive its asymptotic distribution.

11.2 Nonparametric density estimation

Suppose we have an IID sample {x;}? ; and let

n

F(w):%ZH[xZSw]

i=1

denote the empirical distribution function if x;, where I(+) is an indicator function. Consider two
density estimators:
o one-sided estimator:

fula) = F(x—i—h})L—F(x)

o two-sided estimator: . R
R F(x+h/2)— F(x —h/2
oy = et D= Flo b2

Show that:
(a) F(z) is an unbiased estimator of F(x). Hint: recall that F(z) = P{x; < 2} = E[I[z; < z]].

(b) The bias of fi(z) is O (h%). Find the value of a. Hint: take a second-order Taylor series
expansion of F'(z + h) around z.

(¢) The bias of fo(z) is O (R?). Find the value of b. Hint: take a second-order Taylor series
expansion of F’ (ZL‘ + %) and F' (ZL‘ + %) around zx.

Now suppose that we want to estimate the density at the sample mean Z,,, the sample minimum
x(1) and the sample maximum ). Given the results in (b) and (c), what can we expect from the
estimates at these points?

11.3 First difference transformation and nonparametric regression

This problem illustrates the use of a difference operator in nonparametric estimation with IID data.
Suppose that there is a scalar variable z that takes values on a bounded support. For simplicity,
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let z be deterministic and compose a uniform grid on the unit interval [0, 1]. The other variables
are IID. Assume that for the function g () below the following Lipschitz condition is satisfied:

lg9(u) = g(v)| < Glu — 0|
for some constant G.
1. Consider a nonparametric regression of y on z:
yi=g9g(zi)+e, i1=1,--n, (11.1)

where E [e;|z;] = 0. Let the data {(2;,9;)}7; be ordered so that the z’s are in increasing
order. A first difference transformation results in the following set of equations:

Vi — Vi1 =9(zi) —9(zi—1) +ei —ei—1, 1=2,---,n. (11.2)

The target is to estimate o2 = [eg] . Propose its consistent estimator based on the FD-

transformed regression (11.2). Prove consistency of your estimator.

2. Consider the following partially linear regression of y on x and z:

where E [e;]z;, 2;] = 0. Let the data {(z;, 2, y;) }i-; be ordered so that the z’s are in increasing
order. The target is to nonparametrically estimate g. Propose its consistent estimator using
the FD-transformation of (11.3). [Hint: on the first step, consistently estimate § from the
FD-transformed regression.] Prove consistency of your estimator.

11.4 Perfect fit

Analyze carefully the asymptotic properties of the kernel Nadaraya—Watson regression estimator
of a regression function with perfect fit, i.e. when the variance of the error is zero.

11.5 Unbiasedness of kernel estimates

Recall the Nadaraya—Watson kernel estimator ¢ (z) of the conditional mean g (x) = E[y|z] con-
structed for a random sample. Show that if g (x) = ¢, where ¢ is some constant, then ¢ (z) is
unbiased, and provide intuition behind this result. Find out under what circumstance will the
local linear estimator of g () be unbiased under random sampling. Finally, investigate the kernel
estimator of the density f (z) of x for unbiasedness under random sampling,.

11.6  Shape restriction

Firms produce some product using technology f(I,k). The functional form of f is unknown,
although we know that it exhibits constant returns to scale. For a firm ¢, we observe labor [;,
capital k;, and output y;, and the data generating process takes the form y; = f(l;, ki) + &,
where E[g;] = 0 and ¢; is independent of (l;, k;). Using random sample {y;,l;, ki };—;, suggest a
nonparametric estimator of f(l, k) which also exhibits constant returns to scale.
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11.7 Nonparametric hazard rate

Let z1,--- , 2z, be scalar IID random variables with unknown pdf f(-) and cdf F(-). Assume that
the distribution of z has support R. Pick ¢ € R such that 0 < F(¢) < 1. The objective is to
estimate the hazard rate H(t) = f(t)/(1 — F(t)).

(i) Suggest a nonparametric estimator for F(t). Denote this estimator by F ().

(ii) Let

f(t) _ % Zk (Zjh— t)

denote the Nadaraya—Watson estimate of f(¢) where the bandwidth h,, is chosen so that
nhd — 0, and k(-) is a symmetric kernel. Find the asymptotic distribution of f(¢). Do not
worry about regularity conditions.

(iii) Use f(t) and F(t) to suggest an estimator for H(t). Denote this estimator by H(t). Find the
asymptotic distribution of H(t).
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12. CONDITIONAL MOMENT RESTRICTIONS

12.1 Usefulness of skedastic function

Suppose that for the following linear regression model
yi = xif +ei, Blefa] =0
the form of a skedastic function is
E [€f|z] = h(zi, B, ),

where h(-) is a known smooth function, and 7 is an additional parameter vector. Compare asymp-
totic variances of optimal GMM estimators of § when only the first restriction or both restrictions
are employed. Under what conditions does including the second restriction into a set of moment
restrictions reduce asymptotic variance? Try to answer these questions in the general case, then
specialize to the following cases:

1. the function h(-) does not depend on f;

2. the function h(-) does not depend on § and the distribution of e; conditional on z; is sym-
metric.

12.2  Symmetric regression error

Suppose that it is known that the equation
y=oax+e

is a regression of y on z, i.e. that Ee|z] = 0. All variables are scalars. The random sample
{vi, z:};, is available.

1. The investigator also suspects that y, conditional on z, is distributed symmetrically around
the conditional mean. Devise a Hausman specification test for this symmetry. Be specific
and give all details at all stages when constructing the test.

2. Suppose that even though the Hausman test rejects symmetry, the investigator uses the
assumption that e|x ~ N(0,02). Derive the asymptotic properties of the QML estimator of
.

12.3  Optimal instrument in AR-ARCH model

Consider an AR(1) — ARCH(1) model: x; = pzy—1 + ¢4 where the distribution of ¢; conditional
on Iy is symmetric around 0 with E [?|,_1] = (1 — @) + ae? 4, where 0 < p,a < 1 and
Iy = {xtaxt—la T }
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1. Let the space of admissible instruments for estimation of the AR(1) part be

o 0. 9]
Z = {Zqﬁix‘ti, s.t. Zqﬁf < oo} .
i=1 i=1
Using the optimality condition, find the optimal instrument as a function of the model para-

meters p and «. Outline how to construct its feasible version.

2. Use your intuition to speculate on relative efficiency of the optimal instrument you found in
part 1 versus the optimal instrument based on the conditional moment restriction E [e,][;—1] =
0.

12.4 Optimal IV estimation of a constant

Consider the following MA(p) data generating mechanism:
Y = o+ O(L)ey,

where ¢; is a mean zero IID sequence, and O(L) is lag polynomial of finite order p. Derive the
optimal instrument for estimation of o based on the conditional moment restriction

E [yt|yt—p—lyyt—p—Qa .- ] = Q.

12.5 Modified Poisson regression and PML estimators

Let the observable random variable 3 be distributed, conditionally on observable 2 and unobserv-

able ¢ as Poisson with the parameter \(z) = exp(2/3+¢), where E[expe|z] = 1 and V]expe|x] = o2.

Suppose that vector x is distributed as multivariate standard normal.

1. Find the regression and skedastic functions, where the conditional information involves only
x.

2. Find the asymptotic variances of the Nonlinear Least Squares (NLLS) and Weighted Nonlinear
Least Squares (WNLLS) estimators of 3.

3. Find the asymptotic variances of the Pseudo-Maximum Likelihood (PML) estimators of (3
based on

(a) the normal distribution;
(b) the Poisson distribution;

(c) the Gamma distribution.

4. Rank the five estimators in terms of asymptotic efficiency.

!The idea of this problem is borrowed from Gourieroux, C. and Monfort, A. ”Statistics and Econometric Models”,
Cambridge University Press, 1995.
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12.6  Misspecification in variance

Consider the regression model E [y|z] = m (z,0) . Suppose that this regression is conditionally nor-
mal and homoskedastic. A researcher, however, uses the following conditional density to construct
a PML1 estimator of 6g:

(le,0) ~ N (m(2,0) ,m (,6)?)

Establish if such estimator is consistent for 6.

12.7 Optimal instrument and regression on constant

Consider the following model:
Yy=a+e, t=1...,n,

where unobservable e; conditionally on x; is distributed symmetrically with mean zero and variance

r?0? with unknown o2. The data (y;,z;) are IID.

1. Construct a pair of conditional moment restrictions from the information about the condi-
tional mean and conditional variance. Derive the optimal unconditional moment restrictions,
corresponding to (a) the conditional restriction associated with the conditional mean; (b) the
conditional restrictions associated with both the conditional mean and conditional variance.

2. Describe in detail the GMM estimators that correspond to the two optimal sets of uncondi-
tional moment restrictions of part 1. Note that in part 1(a) the parameter o2 is not identified,
therefore propose your own estimator of o2 that differs from the one implied by part 1(b). All
estimators that you construct should be fully feasible. If you use nonparametric estimation,
give all the details. Your description should also contain estimation of asymptotic variances.

3. Compare the asymptotic properties of the GMM estimators that you designed.

4. Derive the Pseudo-Maximum Likelihood estimator of o and o2 of order 2 (PML2) that is
based on the normal distribution. Derive its asymptotic properties. How does this estimator
relate to the GMM estimators you obtained in part 27
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13. EMPIRICAL LIKELIHOOD

13.1 Common mean

Suppose we have the following moment restrictions: E [z] = E[y] = 6.

1. Find the system of equations that yield the maximum empirical likelihood (MEL) estimator
0 of 0, the associated Lagrange multipliers A and the implied probabilities p;. Derive the
asymptotic variances of 6 and A and show how to estimate them.

2. Reduce the number of parameters by eliminating the redundant ones. Then linearize the
system of equations with respect to the Lagrange multipliers that are left, around their
population counterparts of zero. This will help to find an approximate, but explicit solution
for 9, A and p;. Derive that solution and interpret it.

3. Instead of defining the objective function

1 n
—§ log p;
n <

=1

as in the EL approach, let the objective function be

1 n
—= § pi log p;.
n
=1

This gives rise to the exponential tilting (ET) estimator of 6. Find the system of equations
that yields the ET estimator of 6, the associated Lagrange multipliers A and the implied
probabilities p;. Derive the asymptotic variances of 8 and A and show how to estimate them.

13.2 Kullback=Leibler Information Criterion

The Kullback-Leibler Information Criterion (KLIC) measures the distance between distributions,
say ¢g(z) and h(z):

KLIC(g:h)=E, [log %} 5

where E, [-] denotes mathematical expectation according to g(z).
Suppose we have the following moment condition:

E[m(zi, 90):|: 0, ng,
kx1

and an IID sample 21, - -, 2z, with no elements equal to each other. Denote by e the empirical
distribution function (EDF), i.e. the one that assigns probability % to each sample point. Denote
by 7 a discrete distribution that assigns probability m; to the sample point z;, i =1,--- ,n.
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1. Show that minimization of KLIC(e : ) subject to >.» ;7 = 1 and > mim(z;,0) =
0 yields the Maximum Empirical Likelihood (MEL) value of 6 and corresponding implied
probabilities.

2. Now we switch the roles of e and 7w and consider minimization of KLIC(w : e) subject to
the same constraints. What familiar estimator emerges as the solution to this optimization
problem?

3. Now suppose that we have a priori knowledge about the distribution of the data. So, instead
of using the EDF, we use the distribution p that assigns known probability p; to the sample
point z;, ¢ = 1,--- ,n (of course, > " | p; = 1). Analyze how the solutions to the optimization
problems in parts 1 and 2 change.

4. Now suppose that we have postulated a family of densities f(z, ) which is compatible with
the moment condition. Interpret the value of 6 that minimizes KLIC(e : f).

13.3 Empirical likelihood as IV estimation

Consider a linear model with instrumental variables:
y=aB+e, Elze]=0,

where z is k x 1, z is £ x 1, and ¢ > k. Write down the EL estimator of 3 in a matrix form of a (not
completely feasible) instrumental variables estimator. Also write down the efficient GMM estimator,
and explain intuitively why the former is expected to exhibit better finite sample properties than
the latter.
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14. ADVANCED ASYMPTOTIC THEORY

14.1 Maximum likelihood and asymptotic bias

Derive the second order bias of the Maximim Likelihood (ML) estimator A of the parameter A > 0
of the exponential distribution

_ J Aexp(=Xy), y=>0

obtained from IID sample y1,--- , yr,
(a) using an explicit formula for \;
(b) using the expression for the second order bias of extremum estimators.

Construct the bias corrected ML estimator of \.

14.2 Empirical likelihood and asymptotic bias

Consider estimation of a scalar parameter 6 on the basis of the moment function

o= ()

and IID data (x;,y;), ¢ = 1,--- ,n. Show that the second order asymptotic bias of the empirical
likelihood estimator of 6 equals 0.

14.3  Asymptotically irrelevant instruments

Consider the linear model
y = Bz +e,

where scalar random variables x and e are correlated with the correlation coefficient p. Available
are data for an ¢ x 1 vector of instruments z. These instruments, however, are asymptotically
irrelevant, i.e. E[zz] = 0. The data (z;,v;, %), i = 1,--- ,n, are IID.

1. Find the probability limit of the 2SLS estimator of § from the first principles (i.e. without
using the weak instruments theory).

2. Verify that your result in part 1 conforms to the weak instruments theory being its special
case.

3. Find the expected value of the probability limit of the 2SLS estimator. How does it relate to
the probability limit of the OLS estimator?
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14.4 Weakly endogenous regressors

Consider the regression
y=X0+e,

where the regressors X are correlated with the error e, but this correlation is weak. Consider the
decomposition of e to its projection on X and the orthogonal component u:

e=Xm+u.

Assume that (n_lX’X,n_l/QX’u) 2,(Q,¢), where £ ~ N (0,02Q) and @ has full rank. Show
that under the assumption of the drifting parameter DGP 7 = ¢//n, where n is the sample size
and c is fixed, the OLS estimator of 3 is consistent and asymptotically noncentral normal, and

derive the asymptotic distribution of the Wald test statistic for testing the set of linear restriction
RpB = r, where R has full rank q.

14.5 Weakly invalid instruments

Consider a linear model with IID data
y = Bz +e,

where all variables are scalars.
1. Suppose that x and e are correlated, but there is an £ x 1 strong “instrument” z weakly

correlated with e. Derive the asymptotic (as n — oo) distributions of the 2SLS estimator of
0, its t ratio, and the overidentification test statistic

U'z(Z2'2)'7'U
n L )
Uu
where U = Y — BX are the vector of 2SLS residuals and Z is the matrix of instruments,
under the drifting DGP w = ¢, /y/n, where w is the vector of coefficients on z in the linear
projection of e on z. Also, specialize to the case £ = 1.

2. Suppose that = and e are correlated, but there is an ¢ x 1 weak “instrument” z weakly
correlated with e. Derive the asymptotic (as n — oo) distributions of the 2SLS estimator of
B, its t ratio, and the overidentification test statistic J, under the drifting DGP w = ¢, //n
and ™ = ¢, //n, where w is the vector of coefficients on z in the linear projection of e on z,
and 7 is the vector of coefficients on z in the linear projection of x on z. Also, specialize to
the case £ = 1.
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1. ASYMPTOTIC THEORY

1.1 Asymptotics of transformations

1. There are two possibilities to solve the first one. An easier way is using the “second-order
Delta-Method”, see Problem 1.9. But if one remembers trigonometric identities, then there
is a second way:

N N
T(1— cos ¢) = 2Tsin2§ =2 (ﬁsin%) 49 (CO;W N (0, 1)>2 = %X2(1)-

2. Now, similarly to how we proved the Delta-method, we have

dsiny
oY

~

Tsintp = T(sin¢) —sin27) = T (¢—2ﬂ)i>N(O,1).

1};*£>2ﬂ'

3. By the Mann-Wald theorem,

logT—i—logéglogxf = logéﬁ—oo = Tlogéi—oo.

1.2 Asymptotics of t-ratios

The solution is straightforward once we determine to which vector the LLN or CLT should be
applied.

(a) When p = 0, we have: X 20, \/nX <, N(0,02), and 62 & 52, therefore

Vi, =YX 4 L ao,0%) = wi0.1)

o

(b) Consider the vector

= ()55 (")~ ()

By the LLN, the last term goes in probability to the zero vector, and the first term, and thus
the whole W,,, converges in probability to

: 7
limW,, = .
o ( o? )
Moreover, since v/n (7 — M) 4, N(0,0?), we have \/n (7 _ M)Q <.

Next, let W; = (Xi (X; — u)z)/. Then /n (Wn — plimWn> A N(0,V), where V =V [W;].

n—oo
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1.3

Let us calculate V. First, V[X;] = 02 and V [(X; — p)?] = E[((X; — p)? — 0?)?] =7 — 0%
Second, C [X;, (X; — p)?] = E [(X; — p)((Xi — p)? — 02)] = 0. Therefore,

i p) 3 ((5). (5 - 2r))

Now use the Delta-Method with function

1
t1 t1 [t 1
=— = = t
g<t2> Vi g<t2> Ve \ —5-
2
to get
2 4
valr, —pimz,) 4N (014 20 =0)Y
n—oo 40’6

Indeed, the answer reduces to N (0,1) when pu = 0.

Similarly, consider the vector

v (3)-25(0%)

By the LLN, W,, converges in probability to

- I
limW,, = .
Laoes < p? + o? )

Next, /n <Wn - plimWn> <, N(0,V), where V = V[W;], W; = (X; Xf)'. Let us calcu-

late V. First, V[X;] = 02 and V [X?] = E [(X? — p® — 0%)?] = 7 + 4p%0? — 6% Second,
C [Xi;Xﬂ =E [(Xz —w)(XF—p?—o )] = 2u0?. Therefore,

)

. d 0 o? 210
ﬁ(Wn_EE$Wn>HN<<O>7(2MU2 T+4.M2O'2_0'4 ))

t
Now use the Delta-Method with g < il ) = \/—1_ to get
2 2

vn <Rn - plimRn> 4N <o,

n—oo

127 — j20% + 400
4(p? + 02)3

The answer reduces to that of part (b) iff 4 = 0. Under this condition, 7T, and R, are
asymptotically equivalent.

Escaping probability mass

(i) The expectation is

68

E[jiy] = B [£n] 4n] P{A,} + B [n]4,] P{A,} = 4 (1 _ %) +1,
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so the bias is
B, —p=-E+1-1

as n — o0o. The expectation of the square is
_ _ 2 1
E[@2] =E [z2|A,] P{A} + E [n?|4,| P{4,} = (;ﬁ - %) (1 - —) +n,
so the variance is
a2 2 1 2, 2
Vi) = B [i2] = B[ = = (1= =) ((n =) +0?) = o0

as n — 00. As a consequence, the MSE of fi,, is

. . . 1 1
B ] = V1] + Bl - 0* = (0= 4 (1-7) 0?).
and also tends to infinity as n — oo.

(ii) Despite the MSE of fi,, goes to infinity, fi,, is consistent: for any ¢ > 0,

. _ 1 1
Pl 4l > b =F (00— > €} (1= 1) + Pl —pl > e} 5 =0
by consistency of Z, and boundedness of probabilities. The CDF of \/n(fi,, — i) is
Fag,—w ) = P{Vnli, —p) <t}
1 1
= P{Vn(zn—p) <t} (1_E> +P{vn(n—p) gzt}E
- FN(O,UZ) (t)
by asymptotic normality of Z,, and boundedness of probabilities.

(iii) Since the asymptotic distributions of Z,, and fi, are the same, the approximate confidence
intervals for p will be identical except that they center at z,, and fi,,, respectively.

1.4 Creeping bug on simplex

Since x; and yj are perfectly correlated, it suffices to consider either one, say, x;. Note that at
each step zj increases by % with probability p, or stays the same. That is, vy = 51 + %{ x> Where

& is IID Bernoulli(p). This means that zj, = ¢ Zle &; which by the LLN converges in probability
to E[¢;] = p as k — oo. Therefore, plim(zg, yx) = (p,1 — p). Next, due to the CLT,

Vi (ay, — plimay) 5 N (0,p(1 — p)).

Therefore, the rate of convergence is y/n, as usual, and
i (e ) d 0 p(l=p) —p(1-p) >>
n — plim N , )
\/_<< ?/k) P (yk >>_> <<0> <—p(1—p) p(1—p)
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1.5 Asymptotics with shrinking regressor

The formulae for the OLS estimators are

1 1
R _E: IE——§:§:$ R 1
g== 11% 12 ”21 i Ui 5 Loa=5-0z, 62==) ¢ (1.1)

Let us consider 3 first. From (1.1) it follows that

B = LS (ot B+ wi)wy — 27 i (a + B 4+ w) Y @
% > w - (% > Ti)?
. . . 1—p™
_ ﬂ_i_%ZiPZ“i_n_lZZiuiZiPZ: Zz‘pzui_ﬂl——g)(%Zi“i)
%Zi p* — n_l2(zi p')? pPP(l—p>) 1 <p(1—p”)>2 7
1—p? n 1—p
which converges to

B+ L=y li i g

im ;s

RSP

if ¢ = plim )", pu; exists and is a well-defined random variable. It has E[¢] = 0, E [52] =2 £,

and E [53} = I/T%. Hence

~

b-pb i

02

Now let us look at &. Again, from (1.1) we see that
d=at(B-B) - F+-Y uba
n - n - (2 I

where we used (1.2) and the LLN for an average of u;. Next,

. (1.2)

1+n

\/ﬁ(&_a)_L(ﬂ_lé)p(l%pp)"i_%zui_(]n‘i‘vn-

Because of (1.2), U, 2, 0. From the CLT it follows that Vj, <, N(0,0?). Together,

Vila —a) % N(0,02).
Lastly, let us look at 62

&2:lZé?:—Z((a—d)+(ﬂ—@)xi+ui>2. (1.3)

n

Using the facts that: (1) (a —&@)? 20, (2) (8- 3)%/n 20, (3) 23,u? B o2, (4) 13w 20,
(5) ﬁ > plug 2,0, we can derive that

2 2

~2 P
g — 0.

The rest of this solution is optional and is usually not meant when the asymptotics of 62 is
concerned. Before proceeding to deriving its asymptotic distribution, we would like to mark out
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that (8 — 3)/n® 5 0 and (>, plui) /n® 2,0 for any 6 > 0. Using the same algebra as before we

Viiet = o) A = 3 = o),

since the other terms converge in probability to zero. Using the CLT, we get

Vi(6? — %) L N(0,ma),

where my = E [uﬂ — 0% provided that it is finite.

)

1.6 Power trends

1. The OLS estimator satisfies

n -1 5 n -1 5
B —-p= (Z x?) E:L“miei =6 (Z i2>‘> Ei)‘+“/26i.
i=1 =1 i=1 i=1

We can see that E [B — B} =0 and

n

v [B - ﬂ} — 5 (E i2)‘> - iimﬂ.

i=1
v [B — ﬁ} — 0, the estimator 3 will be consistent. This will occur when < 2XA+1 (in this

2
case the continuous analog ( Ik r t”‘dt) ~ T222 1) of the first sum squared diverges faster or

converges slowlier than the continuous analog [ Ty2xtngr ~ 224141 of the second sum, as
220+ 1) < 2X+ p+ 1 iff g < 2X+1). In this case the asymptotic distribution is

n -1 n
A (1=h)/2 <5 _ ﬂ) — Jept(-w/2 (Zi%> Z,L-)\+u/25i
i=1 i=1

n -2 n
d . _ . .
SN 0,68 lim p2A 1 E i E P2t
n—o0 —
1=

i=1
by Lyapunov’s CLT for independent heterogeneous observations, provided that

(S0, 3CA+w)/2) 1/

(S, i)/

1/2
as n — oo, which is satisfied (in this case ( I t”‘*‘“dt) ~ TEA /2 diverges faster or

1/3
converges slowlier than ( i T 322 tn)/ 2dt> ~ TGRMW)/241)/3),

2. The GLS estimator satisfies

n -1 5 —1
B_g= (Z ::_E) le;jsz V5 (Zim“) Zixﬂmgi'

i=1 i=1
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Again, E [B — ﬁ} =0 and
A% [B - 6} =6 (Zn: 2'2’\_“) B iz‘”‘ﬂ.
i=1 i=1

The estimator B will be consistent under the same condition, i.e. when p < 2A + 1. In this
case the asymptotic distribution is

n -1 n
A (1=h)/2 (B _ 5) — ot (-m)/2 (Z i2A—u> Zi’\_“/gei
=1 =1

n -2 n
d : 22A+1—p 2A— 2A— Lt
=N (0, (Snll_l}olon ( E i ) El i )

i=1

by Lyapunov’s CLT for independent heterogeneous observations.

1.7 Asymptotics of rotated logarithms

Use the Delta-Method for

()= (o)) =2 (()-2)

and ¢ ) = Iz —Iny . We have
Y Inz+Iny

500~ ) -aald- (i 3

S0
i InUp —InVp\  (Inp, —Inp, Ay 0 Rereal
InU, +InV, In 1, + In p,, 0
where
Wuu 2wy Wov Wuu _ Wy
asc — | He o Huke o pg Mo M
Wyy Wy Wy 2wy Woy
A Mo Huby M

It follows that InU, —InV,, and InU, + InV,, are asymptotically independent when —- =

Wy Wyy

p2oop

1.8 Trended vs. differenced regression

72

1. The OLS estimator B in that case is

3= S =t -0
Yo t-0*
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1 T
B—8= 1 _ 772l %Zlestt
1 T .2 1 T 2 1 2 1 T 2 %Z;‘lefit
75 21 P — (77 2o 3ot — (72 2 =1t
Now,
1 T T
T32(3— g) = 1 _ 72 2=t LZ HEL ‘
1T 9 (1T N> 1T ;2 (1T ,\? T~ | &
75 21 U= (72 i 75 21 U= (77 i t=1
Because
zT:t T+1 Z T(T +1)(2T + 1)
=1 —1 6

it is easy to see that the first vector converges to (12, —6). Assuming that all conditions for
the CLT for heterogenous martingale difference sequences (e.g., Potscher and Prucha, “Basic
elements of asymptotic theory”, theorem 4.12; Hamilton, “Time series analysis”, proposition
7.8) hold, we find that

T
e (5) 2 (0 (11))
R T —>N 702 2 7
T;( 0 % 1
since
T 2
1 t oo 1 t 1
hmT;V[Tq} = 0 hmf;<?) :57
T
hm—ZV[st] = o2,
t=1
hleC L = 2hleT:i—l
T T T CMRT 2T T
t=1 t=1
Consequently,
. 0 11
T3/2(ﬂ—6)—>(12,—6)-N<<0>,02< t ] >> = N(0,120?).
2

2. For the regression vy — y:—1 = 0 + &+ — €11 the OLS estimator is

T
~ ET — &0
== Z — Y1) =B+ T

SO, T(B — ﬂ) =&r — &0~ D(O, 20’2).
3. When T is sufficiently large, 5 N (ﬁ, 12(’ ), and § ~ D (5, %,%2) . It is easy to see that for

large T', the (approximate) variance of the first estimator is less than that of the second.
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1.9 Second-order Delta-Method

(a) From the CLT, /nS, <, N (0,1). Using the Mann-Wald theorem for g(x) = 22, we have
nS2 <, 2(1).

(b) The Taylor expansion around cos(0) = 1 yields cos(S,) = 1 — 3 cos(S5)S2, where S} €
[0, S,]. From the LLN and Mann-Wald theorem, cos(S*) 2 1, and from the Slutsky theorem,
2n(1 — cos(Syp)) A 2(1).

(c) Let z, 2 z = const and /n(z, — 2) 4N (0,0%) . Let g be twice continuously differentiable
at z with ¢/(z) = 0 and ¢”(z) # 0. Then

ng(z) —9(2) 4 o
02 g//(z) X (1)

Proof. Indeed, as ¢'(z) = 0, from the second-order Taylor expansion,

1

9(zn) = 9(2) + 59"(") (20 — 2)°,

and, since ¢"(z*) % ¢’(z) and M <, N (0,1), we have

2n g(zn) — g(2) _ [\/ﬁ(zn—z)r d

0-2 g//(z)

QED

1.10 Long run variance for AR(1)

The long-run variance is V,, = jioo((:[ztet,zt,jet,j]. Because e; and z; are scalars, inde-
pendent at all lags and leads, and E[e;] = 0, we have C|[zes, z—jer—j] = E[zzi—;] Eerer—j] .
Let for simplicity 2 also have zero mean. Then for j > 0, Elzz_;] = pl(1- pg)_l o2 and

E [erer—j] = o (1- pz)_1 o2, where p,, 02, p,, 02 are AR(1) parameters. To sum up,

+
Vo0 _oe ZOO il il — L+ pape 5202
ze — — .
L=p2l=pz = 777 (L=pepe) (L =p2) (L =p2) ©°

To estimate V., find the OLS estimates p., 62, pey 62 from AR(1) regressions and plug them in.
The resulting V. will be consistent by the Continuous Mapping Theorem.

1.11 Asymptotics of averages of AR(1) and MA(1)

Note that y; can be rewritten as y; = Z;r:og pjxt_j.
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1. (i) y¢ is not an MDS relative to own past {y;—1, y¢—2, ...} as it is correlated with older y;’s; (ii) 2
is an MDS relative to {xy_2,z;_3, ...}, but is not an MDS relative to own past {z;_1, z;—2, ...},
because z; and z;—1 are correlated through z;_;.

2. (i) By the CLT for the general stationary and ergodic case, \/T@T LA N (0, qyy), where
2
o

Qyy = Zj:ioo((j[yt,yt_j]. It can be shown that for an AR(1) process, 7o = T2 Vi =
N— P
R
0'2 . +00 02 ..
v = - p2p7. Therefore, gy, = e = W (ii) By the CLT for the general

stationary and ergodic case, vVIZr LN N (0,q.z), where q., = vy + 271 + QZ;L:O; v =
N

=0
(14 6%)0% +200% = 02(1 +0)2.

3. If we have consistent estimates 62, p, 0 of a2, p, 0, we can estimate qyy and g consistently by
A2

o ~

W and 62(1 + 6)2, respectively. Note that these are positive numbers by construction.
—p

Alternatively, we could use robust estimators, like the Newey—West nonparametric estimator,

ignoring additional information that we have. But under the circumstances this seems to be

less efficient.

4. For vectors, (i) VTyr <, N (0, Qyy), where Qyy = j;’ioo Clyt,yt—j] . ButI'g = ijog PIXPY,
r
j
[j = Pily if j > 0, and I'; = I ; = ToP'Ulif j < 0. Hence Qyy = To + 3% PIT +
Zj:o‘f [oP7 =Tg+ (I —P)"'PTy+ToP/(I —P')~t = (I —P)~ (Tyg — PToP") (I — P")~L; (ii)
VTzr % N (0,Q..), where Q.. = To+T1+T_1 = 2+0%0 +0L+%0 = (I+0)S(1+0).
As for estimation of asymptotic variances, it is evidently possible to construct consistent es-
timators of QQyy and (.. that are positive definite by construction.

1.12  Asymptotics for impulse response functions

1. For the AR(1) process, by repeated substitution, we have

o
Yt = Z,O]ij-
j=0

Since the weights decline exponentially, their sum absolutely converges to a finite constant.
The IRF is '
[RF(j) = ¢/, j=>0.

The ARMA(1,1) process written via lag polynomials is

1-0L
- 1_pL€t7

2t

of which the MA(oco) representation is

o0
z=¢e+(p—0) Zpigt—i—l-
i=0
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. The estimate based on the OLS estimator p of p, is I/R?'(j) = /. Since VT (p—p) =

Since the weights decline exponentially, their sum absolutely converges to a finite constant.
The IRF is '
IRF(0) =1, IRF(j)=(p—0)p"%, j>0.

d

N (0, 1- ,02) , we can derive using the Delta Method that
VT (TRF(j) — IRF(j)) % N (0,2207) (1= 7))

as T'— oo when j > 1, andﬁ?(O)—IRF(O):().

. Denote e; = g4 — Og4—1. Since p EN p and 020 (this will be shown below), we can construct

consistent estimators as

TRF(0) =1, TREG) = (p—0) ™% j>0.

Evidently, IRF (0) has a degenerate distribution. To derive the asymptotic distribution of
— AN\ /

IRF(j) for j > 0, let us first derive the asymptotic distribution of (,b, 9> . Consistency can
be shown easily:

oot T Tsmae p Blaoe]
T- 1Zt 3 2—2%4—1 E [z -12)]
0 g bty 0
- = = Zt’%eti l-... expansion of &  --- 2 -——.
1+46 > =26 1+46

Since the solution of a quadratic equation is a continuous function of its coefficients, consis-
tency of 0 obtains. To derive the asymptotic distribution, we need the following component:

1 eter—1 — I [€t€t—1] J
—=> e} — B [ef] SN (0,9),
T t=3

2t—2€t

where € is a 3 x 3 variance matrix which is a function of 6, p, 62 and x = E [e}] (derivation
is very tedious; one should account for serial correlation in summands). Next, from exam-
ining the formula defining @, dropping the terms that do not contribute to the asymptotic
distribution, we can find that

0 0 A 5
ﬁ(-m - (—m>> :alﬁ(f?_ﬂ)

+a2% Z (erei—1 — Elerer—1]) + 043% Z (e? —E [e?])

for certain constants aq, o, as. It follows by the Delta Method that

o é_(1+92)2 é B 0
ﬁ<9_9)_ 1— 62 ﬁ( 140 < 1+02>)
2 VT (p— p) +ﬁ2%2(6t6t—1 —E[eier—1]) +ﬁ3%z (¢ —B[ef])

for certain constants 3, 34, 33. It follows that

Zt—2€¢
>_ r_z 2 Bl | L a(o.ror).

erer—1 — Bleres—1]

%>b>

(5
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for certain 2 x 3 matrix I'. Finally, applying the Delta Method again,

VT (TRP() ~ IRF(j)) £ VT ( b ) 9\ (0,470 ),

for certain 2 x 1 vector ~.
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2. BOOTSTRAP

2.1 Brief and exhaustive

1. The mentioned difference indeed exists, but it is not the principal one. The two methods have
some common features like computer simulations, sampling, etc., but they serve completely
different goals. The bootstrap is an alternative to analytical asymptotic theory for making
inferences, while Monte-Carlo is used for studying small-sample properties of the estimators.

2. After some point raising B does not help since the bootstrap distribution is intrinsically
discrete, and raising B cannot smooth things out. Even more than that if we’re interested
in quantiles, and we usually are: the quantile for a discrete distribution is a whole interval,
and the uncertainty about which point to choose to be a quantile doesn’t disappear when we
raise B.

3. There is no such thing as a “bootstrap estimator”. Bootstrapping is a method of inference,
not of estimation. The same goes for an “asymptotic estimator”.

4. Due to the assumption of random sampling, there cannot be unconditional heteroskedasticity.
If conditional heteroskedasticity is present, it does not invalidate the nonparametric bootstrap.
The dependence of conditional variance on regressors is not destroyed by bootstrap resampling
as the data (z;,y;) are resampled in pairs.

2.2 Bootstrapping t-ratio

The Hall percentile interval is Clg = [@ —qj_, /2,§ - q /2], where ¢}, is the bootstrap a-quantile
o e i 0 —0
of 6 —0,ie. a =P —0 < ¢} But then qg is the a-quantile of e T, since
S s

-0 _ g ,
IP’{ @) < %3)} = «. But by construction, the a-quantile of T, is ¢}, hence @ = s(6)qp.
s s

Substituting this into C' I, we get the CI as in the problem.

2.3 Bootstrap bias correction

1. The bootstrap version T, of T, has mean T,, with respect to the EDF: E* [z}] = Z,. Thus the

bootstrap version of the bias (which is itself zero) is Bias*(z,) = E* [z}] — &), = 0. Therefore,
the bootstrap bias corrected estimator of u is Z, — Bias*(Z,) = Z,,. Now consider the bias of

:i",,%:
Bias(z2) = E [22] — 12 = V [£4] = ~V [a].

n
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Thus the bootstrap version of the bias is the sample analog of this quantity:

Bias® (2) = ~V* [2] = — <1 S a2 w2)

n n \n

Therefore, the bootstrap bias corrected estimator of 2

1
fi—Bias*(ig)—n—i_ 72 — Zx

2. Since the sample average is an unbiased estimator of the population mean for any distribution,
the bootstrap bias correction for 22 will be zero, and thus the bias-corrected estimator for
E[2?] will be o

22
(cf. the previous part). Next note that the bootstrap distribution is 0 with probability % and
3 with probability %, so the bootstrap distribution for 22 = i(zl + 22)% is 0 with probability

%, % with probability %, and 9 with probability %. Thus the bootstrap bias estimate is

Tl 9\ 1(9 9\, L(g_9)_9
4 4) 2\4 4) 4 4) 8

and the bias corrected version is

Z(Zl + 22)2 -3

3. When we bootstrap an inconsistent estimator, its bootstrap analogs are concentrated more
and more around the probability limit of the estimator, and thus the estimate of the bias
becomes smaller and smaller as the sample size grows. That is, bootstrapping is able to correct
the bias caused by finite sample nonsymmetry of the distribution, but not the asymptotic
bias (difference between the probability limit of the estimator and the true parameter value).

2.4 Bootstrapping conditional mean

We are interested in g(z) = E[2/8 + e|z] = 2/, and as the point estimate we take g(x) = /0,
where 3 is the OLS estimator for 3. To pivotize g(z), we observe that

V' (B — 8) 5 N (0,2 (B [wif]) ' B [elaiat] (B [ziaf]) " 2),

so the appropriate statistic to bootstrap is

where s (§(z)) = \/w’ O wxl)” (Ze zixh) (30 wial)” ! 2. The bootstrap version is

B
7 s(g*(2)

where s (¢*(x)) = \/ O xray)™ (Z earay) (Y atw #)~! 2. The rest is standard, and the con-
fidence interval is

Y

~—

Cly = [x B—qi_as(9(x);2'8 - qis (3(2)]

where ¢ and gj_o are appropriate bootstrap quantiles for ¢7.
2 2
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2.5 Bootstrap for impulse response functions

1. For each j > 1, simulate the bootstrap distribution of the absolute value of the t-statistic:

VTP — P
N

i =

the bootstrap analog of which is
)= VT )
A N
read off the bootstrap quantiles j1_o and construct the symmetric percentile-¢ confidence

interval |p’ T TG 1a - jlplt (1 - /32) /T}

2. Most appropriate is the residual bootstrap when bootstrap samples are generated by resam-
pling estimates of innovations €;. The corrected estimates of the IRFs are

IRF(j) =2 (p—0) /™" - % :1 (b5 — 03) 27,

where pj, @Z are obtained in b** bootstrap repetition by using the same formulae as used for
p, 0 but computed from the bootstrap sample.
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3. REGRESSION AND PROJECTION

3.1 Regressing and projecting dice

(i) The joint distribution is

(ii) The best predictor is

E[Y|X] =

and undefined for all other X.

(iii) To find the best linear predictor, we need E[X] = 2, E[Y] =

B=CIX,Y]/V[X] =15, a=%s0

with probability %,
with probability =,
with probability =,
with probability =,
with probability =,
with probability g.

NN N N N

cor oo
o O L N
S e e N N N

o N W
PP
Il
=)

21 7

BLP[Y |X] = = + —X.

(iv)

UpLp =

8§ 16

-9 with probability %,
0 with probability %,
2 with probability z,

—13 with probability £,
—12 with probability =,
% with probability =,
— with probability =,
19 with probability =,
§ with probability z.

so B [U3p] =%, E[Ukp| ~1.9. Indeed, E [U}p] <E [U3.p]-

3.2 Bernoulli regressor

Note that

_ Ko, T = 07

REGRESSION AND PROJECTION

=po (1 —2) +px = po+ (11 — Ho) @
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and

2 2
+ o =0
E [2lz] = Ho 0’ ) = 124024 (12— 12+ 02 — o) 2.
[y\ ] {M%+G%, r=1, Ho 0 (Ml Ho 1 0)
These expectations are linear in x because the support of x has only two points, and one can always
draw a straight line through two points. The reason is NOT conditional normality!

3.3 Unobservables among regressors

By the Law of Iterated Expectations, E [y|z, 2] = a + Bz + vz. Thus we know that in the linear
prediction y = a + Bz + vz + ey, the prediction error e, is uncorrelated with the predictors, i.e.
Cley,x] = Cley, 2] = 0. Consider the linear prediction of z by x: z = ( + éx + e,, Cle,,z] = 0.
But since C [z, z] = 0, we know that 6 = 0. Now, if we linearly predict y only by x, we will have
y=a+px+v(+e:)+e = a+¢+ B+ ve, + ey. Here the composite error e, + e, is
uncorrelated with x and thus is the best linear prediction error. As a result, the OLS estimator of
( is consistent.

Checking the properties of the second option is more involved. Notice that the OLS coefficients
in the linear prediction of y by x and w converge in probability to

b —1 -1
(D)= (2 ) Go) (o ) (%)
w Ozw 01211 Owy Ozw U%v ﬂga:w‘i"}’awz ’

so we can see that
.2 OzwOwz
plimg =+ ——= 57
020w — Ozw

Thus in general the second option gives an inconsistent estimator.

3.4 Consistency of OLS under serially correlated errors

1. Indeed,

E[ut] = E[Z/t - ﬁyt—l] = E[yt] - /3E[yt—1] =0-p3-0=0

and
C [Ubyt—l] =C [yt - 5yt—1;yt—1] =C [yuyt—l] - BV [yt—l] =0.

(ii) Now let us show that 3 is consistent. Since Ely:] = 0, it immediately follows that

1 T
T 2= Ult—1

T
% Zt:2 YtYt—1
T~ 2, Pt
T di—aYi1

jo T g,

1 T 2
T di—a Vi1

E [utytfl]

Bl

(iii) To show that u; is serially correlated, consider

Clug, ug—1] = Clys — Byi—1,ye—1 — Bys—2] = B (BC [y, ye—1] — Clys, ye—2])
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C lys, ys—2]

. As an example of a serially
C [yt7 ytfl]

which is generally not zero unless § = 0 or 8 =

correlated u; take the AR(2) process

Yt = QYi—2 + €,
where &; are IID. Then § = 0 and thus u; = v, serially correlated.

The OLS estimator is inconsistent if the error term is correlated with the right-hand-side
variables. This latter is not necessarily the same as serial correlatedness of the error term.

Brief and exhaustive

. It simplifies a lot. First, we can use simpler versions of LLNs and CLT's; second, we do not

need additional conditions beside existence of some moments. For example, for consistency
of the OLS estimator in the linear mean regression model y; = x;8 + e;, E[e;|z;] = 0, only
existence of moments is needed, while in the case of fixed regressors we (1) have to use the
LLN for heterogeneous sequences, (2) have to add the condition £ ™% 22 — M.

n n—o0

. The economist is probably right about treating the regressors as random if he has a random

sampling experiment. But his reasoning is completely ridiculous. For a sampled individual,
his/her characteristics (whether true or false) are fixed; randomness arises from the fact that
this individual is randomly selected.

. Elz|z] = g(2) is a strictly increasing and continuous function, therefore g~1(-) exists and

E [z]z] = 7 is equivalent to z = g~ 1(v). If E[y|z] = f(2), then E [y|E[z|z] =] = f(g~*(7)).
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4.

LINEAR REGRESSION

4.1

4.2

Brief and exhaustive

. The OLS estimator is unbiased conditional on all x;-variables, irrespective of how z;’s are

generated. The conditional unbiasedness property implied unbiasedness.

. Observe that E[y|z] = a + Bz, V [y|z] = (o + Bx)?. Consequently, we can use the usual OLS

estimator and White’s standard errors. By the way, the model y = (a + Sx)e can be viewed
as y = a + Bx + u, where u = (a + pz)(e — 1), Eu|z] =0, V [u|z] = (a + Bz)2.

Variance estimation

. Yes, one should use White’s formula, but not because 0?Q.! does not make sense. It does

make sense, but is irrelevant to calculation of the asymptotic variance of the OLS estimator,
which in general takes the “sandwich” form. It is not true that o2 varies from observation to
observation, if by o we mean unconditional variance of the error term.

. Yes, there is a fallacy. The estimate Q) must depend on the whole sample including vector Y.

Therefore, it is not measurable with respect to X, and
. -1 . -1
E [(X'Q—IX) X’Q_1Y|X} ” (X’Q—IX) X'O B [Y|X] = 6.

This brings us to the conclusion that the feasible GLS estimator is in general biased in finite
samples.

. The first part of the claim is totally correct. But availability of the ¢ or Wald statistics is not

enough to do inference. We need critical values for these statistics, and they can be obtained
only from some distribution theory, asymptotic in particular.

. In the OLS case, the method works not because each o?(z;) is estimated by &2, but because

1 1 n
ZX'OX == xhe2
nX QX = - ;1 T;T;€;

consistently estimates E[zaz'e?] = E[zz’'c?(x)]. In the GLS case, the same trick does not work:

n

1.4 1 ;!
_XIQ—IX _ = ad)
n n Zz_; é?

can potentially consistently estimate BE[za’/e?], but this is not the same as E[z2’/o?(z)]. Of
course, {2 cannot consistently estimate {2, econometrician B is right about this, but the trick
in the OLS case works for a completely different reason.
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4.3 Estimation of linear combination

4.4

88

1. Consider the class of linear estimators, i.e. one having the form 0 = AY, where A depends

only on data X = ((1,21,21) -+ (1, Zn, zn)") . The conditional unbiasedness requirement yields
the condition AX = (1,c¢g,c,)6, where § = (, 3,7)". The best linear unbiased estimator is
6 = (1,cm,cz)3, where & is the OLS estimator. Indeed, this estimator belongs to the class
considered, since 6 = (1,¢q,¢.) (X'X) XY = A*Y for A* = (1,¢p,¢.) (X'X) P A7 and
A*X = (1, ¢z, ;). Besides,

% [E)M = 02(1, cpy02) (X'X) 7 (1, ey 02

and is minimal in the class because the key relationship (A — A*).A* = 0 holds.

. Observe that \/n (@ - 9) = (1, ¢z, c2)v/n (3 — (5) LN (0,V;) , where

2 2
+ 2 —2
Vé = 0.2 (1 + ¢w ?z_ p2p¢x¢z) ’

¢, = (Blz] — cz) //V[z], ¢, = (Blz] — ) /\/V]z], and p is the correlation coefficient between

z and z.

. Minimization of Vj; with respect to p yields

O |0

1
NN T T
e

. Multicollinearity between x and z means that p = 1 and § and 6 are unidentified. An

implication is that the asymptotic variance of 0 is infinite.

Incomplete regression

1. Note that

yi = 2if + 2y + ;-
We know that E[n;|z] = 0, so E[zmn;] = 0. However, E[z;n;] # 0 unless v = 0, because
0 = Elziei] = Elx; (zv+m;)] = Elziz)] v + E[ain,], and we know that E[z;z]] # 0. The
regression of y; on x; and z; yields the OLS estimates with the probability limit

plim (5) _ <§) +Q_1<E ['f)ini]>7

o- (B o)

where

)

We can see that the estimators B and 4 are in general inconsistent. To be more precise, the
inconsistency of both 3 and 4 is proportional to E [x;7,] , so that unless v = 0 (or, more subtly,
unless v lies in the null space of E [z;z]]), the estimators are inconsistent.
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2. The first step yields a consistent OLS estimate B of B because of the OLS estimator is
consistent in a linear mean regression. At the second step, we get the OLS estimate

§ = (D) L= (Sd) (e Tl (5-9)) -
= v (A a) (e Tt (7-9)).

Since + 3" 22 L Blz2], %Zzlm; LBz, LSz L Elzim] =0, 3— 320, we have

that 4 is consistent for ~.

Therefore, from the point of view of consistency of 3 and 4, we recommend the second method.
The limiting distribution of \/n (¥ —7) can be deduced by using the Delta-Method. Observe that

i) = () (4 o (4 ) S

1 Zin;\ d 0 Elzizin;]  Elzixin;ei]
n Z <$i€i> —N << 0 > ’ ( Elz;zinei]  o*Elziz)] ‘
Having applied the Delta-Method and the Continuous Mapping Theorems, we get
Vi (=) SN (0, (Blzz) 'V (Blzz) ),
where

V = Elzznd] + 0?Blzizl] (Blzia]) ™ Blz2)

—Elzixj] (E[wﬂﬂ)il Blzizin;es]) — Blzixin;es] (Blas)])  Bleiz).
4.5 Generated regressor
Observe that
ﬁ(@—ﬁ) = lEn::L“Q h Limiui—ﬁ(d—a)-lixizi .
niz Vi N

Now,

n

1 n

2P 2 P

- E 1 A . E 1 Ti% — Vg, Dby the LLN,
1= 1=

%fim < a( (9, 72 0 by the CLT.
(e )= (66 1)

We can assert that the convergence here is joint (i.e., as of a vector sequence) because of inde-
pendence of the components. Because of their independence, their joint CDF is just a product of
marginal CDF's, and pointwise convergence of these marginal CDFs implies pointwise convergence
of the joint CDF. This is important, since generally weak convergence of components of a vector
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sequence separately does not imply joint weak convergence (recall the counterexample given in
class).
Now, by the Slutsky theorem,

1 & . RS d
\/_ﬁ E wiui—\/ﬁ(a—a)'g E $¢Z¢—>N(0,’Yg20+’73;z)'
i=1 i=1

Applying the Slutsky theorem again, we find:

R _ 2
Vi (5-6) % ()N a2 4a2) =4 (0.5 + 1),

x T

Note how a preliminary estimation step affects the precision in estimation of other parameters: the
asymptotic variance blows up. The implication is that sequential estimation makes “naive” (i.e.
which ignore preliminary estimation steps) standard errors invalid.

4.6 Long and short regressions

Let us denote this estimator by §;. We have

-1 _

o= (X)) XY = (XX TV (X0 Xafy + o) =
1o,o\ /1, 1o, .\ /1,

= B+ (=-X1Xy —X1Xo ) By + | =X1X4 —Xie.
n n n n

Since E [e;v1;] = 0, we have that 2 X{e > 0 by the LLN. Also, by the LLN, 1 X1 X; 5 B [21,2};]
and 1 X! X5 % E[vy;ah,] . Therefore,

By L By + (B [1aly]) T B [mrah;] B

So, in general, Bl is inconsistent. It will be consistent if 3, lies in the null space of E [x1;25;] . Two
special cases of this are: (1) when 5 = 0, i.e. when the true model is Y = X3, + ¢; (2) when
E [mllegz] = 0.

4.7 Ridge regression

1. There is conditional bias: E[B|X] = (X'X + M) ' X'B[Y|X] = - (X'X + M)~ '\3, unless
B =0. Next, E[f] = 8 —E[(X'X + M) !]A\3 # 3 unless 3 = 0. Therefore, estimator is in
general biased.

2. Observe that

B = (X'X+ M) ' X'XB+ (X'X + M) ' X'e

1 A 1 1 A 1
i i i i
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Since % Zl'zl'; LA E [IL’z.’L’;] s % Zl'zfi LN E [33151] =0, % N 0, we have:
B L (B [xiaf]) " B [252]] B+ (B [zi2]]) " 0= 8,

that is, B is consistent.

3. The math is straightforward:

—~1 -1
V(B -p) = (% XZ:%OSQ + %Ik> ;—%5 + (% ;wzxi + %Ik) % sz&?z

g ~~ _ P
7 | 7 1
(B [waf]) ™ 0 Elua)™ N (0B [wiajed])

2, N (07 Qw_lemve2 Q:;J:?l) .

- 2
4. The conditional mean squared error criterion [ [(ﬁ — ﬁ) |X} can be used. For the OLS

estimator,

E [(ﬂ - 5)2 |X] =V M = (X'X) XX (X' X)L
For the ridge estimator,

B|(5-9)" 1| = (XX 4 A7 (00X +X258) (XX + A1)

By the first order approximation, if A is small, (X'X + Al) ™! ~ (X'X) 7 (I — M(X'X) 7).
Hence,

. [(5 B 6)2 IX} ~ (XX THI - AXTX)THEXTQX) T - AMX'X)TH(XX) T

N

~ E[(6-0) - MX'X)UX'QX(X'X)" !+ (X' X)L X' QX)(X' X)L

~ 2 ~ 2
That is E [(ﬂ - ﬂ) |X] -E [(ﬂ - ﬂ) |X} = A, where A is positive definite (exercise: show

this). Thus for small A, B is a preferable estimator to B according to the mean squared error
criterion, despite its biasedness.

4.8 Expectations of White and Newey—West estimators in |ID setting

The White formula (apart from the factor n) is

Vy= (X)) wale? (X')
=1
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Note that é; = e; — 2 <ﬂ 5), so é2 = e? — 2 (3—ﬁ>ei+mé<3—ﬂ> <B—5>,xi and that
B—p=@xx" > iy xje;. Hence

E ixlx;éﬂ)(] = E ixixéeﬂ?{ —2E [ixzx;x; (@ — ﬁ) ei]/l’]
i=1 j =
>t (3-) (3-) =]
— 52 Z 22, — 202 Z vl (X'X) " 2y + 0 znj vl (X'X) " ay
i=1
= Qsz <1—x XX)fle),

+E

" E [(ﬁ . B) ei|X} = (X'X) T XB[eE)X] = o (X'X)
and ,
[(3-9) (5-9) ] = v
Finally,
E [VB\X] - 'g ixix;é?y)(] ()

_ Zx (1—3; XX)_lch) (x'x)~"

Let w; =1 —[j]|/(m + 1). The Newey-West estimator of the asymptotic variance matrix of 3
with lag truncation parameter m is Vy = (X'X)"" S (X’X) ™" | where

min(n,n+j)

$= S 3wy (3-9)) (oot (-9))

j=—-m  i=max(1,1+j)
Thus

min(n,n+j)

B5ie) = S ws > et 8ok (3-0)) (o -y (3-9) 1]

j=-m  i=max(1,14+j)

S min%m | IO [(/o’ - 5) (8- 9) /A!x] T
j=—m  i=max(1,145) —ziB [(ﬁ - 5) ei—j’X} -z B [ei (5 - 5) |X}

min(n,n+j)

+m
= 0'2)(/_)( — 0'2 Z wj Z (:p; (X/X)il ZL‘Z;J'> x@-x;_j.

Jj=—m  i=max(1,1+j)
Finally,

min(n,n+j)

B |Vlx| = o (¥'2) " - o? (¥'x) +Zm wi Y () ) mag ()7

j=—m  i=max(1,1+j)
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4.9 Exponential heteroskedasticity

1. At the first step, get 3, a consistent estimate of (3 (for example, OLS). Then construct
67 = exp(x3) for all i (we don’t need exp(a) since it is a multiplicative scalar that eventually

cancels out) and use these weights at the second step to construct a feasible GLS estimator

of 3:
1 oy
8= (E Z &i—?xix;> E Z (}i—?xiyi.
i i

2. The feasible GLS estimator is asymptotically efficient, since it is asymptotically equivalent to
GLS. It is finite-sample inefficient, since we changed the weights from what GLS presumes.

4.10 OLS and GLS are identical

1. Evidently, E[Y|X] = X@ and ¥ = V[Y|X] = XI' X’ + 021,. Since the latter depends on X,

we are in the heteroskedastic environment.

2. The OLS estimator is
B=(X'X)"' X,
and the GLS estimator is .
B=(X's7'x) 7 X's Y.

First, X'¢ = X' (Y X (X'x)7! X'Y) = XY - X'X (X'X)"'X'Y = X'Y - X'V = 0.
Premultiply this by XT': XI'X’é = 0. Add o2¢é to both sides and combine the terms on the
left-hand side: (XFX’ + O'QIn) é = Yé = o2é. Now predividing by matrix ¥ gives é = o2X " 1é.
Premultiply once gain by X’ to get 0 = X'é = o2 X'S71e, or just X'Y71é = 0. Recall now
what € is: X’271Y = X'S71X (X'X) "' X'Y which implies 8 = J.

The fact that the two estimators are identical implies that all the statistics based on the two
will be identical and thus have the same distribution.

3. Evidently, in this model the coincidence of the two estimators gives unambiguous superiority
of the OLS estimator. In spite of heteroskedasticity, it is efficient in the class of linear unbiased
estimators, since it coincides with GLS. The GLS estimator is worse since its feasible version
requires estimation of ¥, while the OLS estimator does not. Additional estimation of ¥ adds
noise which may spoil finite sample performance of the GLS estimator. But all this is not
typical for ranking OLS and GLS estimators and is a result of a special form of matrix 3.

4.11 OLS and GLS are equivalent

1. When X = XO, we have X'YX = X'X0O and ' X = X071, so that

v [B1x] = (x) " xmx (x) 7 = 0 (xx)
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and v [B|X} _ (X’E_IX)A _ (X’X@j)*l =0 (X’X)_l.

2. In this example,

L p p
p p ... 1

and XX = o%(1 +p(n—1))-(1,1,--- ,1) = XO, where
0 =o*(1+ p(n —1)).

Thus one does not need to use GLS but instead do OLS to achieve the same finite-sample
efficiency.

4.12 Equicorrelated observations

This is essentially a repetition of the second part of the previous problem, from which it follows
that under the circumstances Z,, the best linear conditionally (on a constant which is the same as
unconditionally) unbiased estimator of f because of coincidence of its variance with that of the GLS
estimator. Appealing to the case when |y| > 1 (which is tempting because then the variance of Z,,
is larger than that of, say, x1) is invalid, because it is ruled out by the Cauchy-Schwartz inequality.
One cannot appeal to the usual LLNs because z is non-ergodic. The variance of T, is V[Z,] =
% -1+ ”T_l -7y — 7 as n — 00, so the estimator Z, is in general inconsistent (except in the case
when v = 0). For an example of inconsistent Z,, assume that v > 0 and consider the following
construct: u; = € +¢;, where ¢; ~ IID(0,1—+) and € ~ (0,7) independent of ¢; for all 7. Then the
correlation structure is exactly as in the problem, and % >y RN €, a random nonzero limit.

4.13 Unbiasedness of certain FGLS estimators

(a) 0=E[z—z2]|=E[z]+E[—2] =E[z] + E[2] = 2E [2]. It follows that E [2] = 0.
(b) Elg(e)] =E[—q(—¢)] =E[—q(e)] = —E][g(¢)] . It follows that E[q (¢)] = 0.

Consider ;)
Br-8=(2s7x) asle

Let 3 be an estimate of ¥ which is a function of products of least squares residuals, i.e.
Y =F (MEEM) = H (EE')

~ -1 ~
for M =1 — X (X'X)"' X'. Conditional on X, the expression (X’E’b\’) X'Y71€ is odd in €&,
and £ and —& have the same conditional distribution. Hence by (b),

E[Bp—ﬂ}:o.
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5. NONLINEAR REGRESSION

5.1 Local and global identification

1. In the linear case, Qur = E[z?], a scalar. Its rank (i.e. it itself) equals zero if and only

if Pr{ex =0} = 1, i.e. when a = 0, the identification condition fails. When a # 0, the
identification condition is satisfied. Graphically, when all point lie on a vertical line, we can
unambiguously draw a line from the origin through them except when all points are lying on
the ordinate axis.
In the nonlinear case, @,y = Elgs (z,8) g5 (x,8)"] = gg(a,B)gs(a,B)", a k x k martrix.
This matrix is a square of a vector having rank 1, hence its rank can be only one or zero.
Hence, if k > 1 (there are more than one parameter), this matrix cannot be of full rank, and
identification fails. Graphically, there are an infinite number of curves passing through a set
of points on a vertical line. If k = 1 and gg(a, ) # 0, there is identification; if £ = 1 and
g3 (a, B) = 0, there is identification failure (see the linear case). Intuition in the case k = 1:
if marginal changes in 3 shift the only regression value g (a, 3), it can be identified; if they
do not shift it, many values of 3 are consistent with the same value of g (a, 3).

2. The quasiregressor is gg = (1, 23,x)". The local ID condition that FE [ggg/ﬂ] is of full rank

is satisfied since it is equivalent to det & [ggg/ﬁ} = V[205x] # 0 which holds due to 85 # 0

and V[z] # 0. But the global ID condition fails because the sign of (3, is not identified:
together with the true pair (8;,3,)", another pair (8;, —(5)" also minimizes the population
least squares criterion.

5.2 Exponential regression

The local IC is satisfied: the matrix

1 =z
T T

dexp (a+ fz) dexp (a + Bx)

G0 L,

is invertable. The asymptotic distribution is normal with variance matrix

o2

Qe =B =exp (0)’E K ) )] = exp (20) I

VNLLS = ———
NLLS exp (20&) 2

The concentration algorithm uses the grid on (3. For each (3 on this grid, we can estimate exp (« (3))
by OLS from the regression of y on exp (), so the estimate and sum of squared residuals are
& (5) _ log Z?:l eXp (/85[;1) Yi
Z?:1 exp (26z;) ’
n

SSR(B) = > (yi—exp(a(B)+ Bz:)’.

=1
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Choose such (3 that yields minimum value of SSR(3) on the grid. Set & = @&(f). The standard

errors se (&) and se(3) can be computed as square roots of the diagonal elements of

w (gexp (2&—&—23%) ( il 22 >>_

Note that we cannot use the above expression for Vyrrg since in practice we do not know the
distribution of x and that g = 0.

5.3 Power regression

Under Hy : a = 0, the parameter (3 is not identified. Therefore, the Wald (or t) statistic does not
have a usual asymptotic distribution, and we should use the sup-Wald statistic

supW = supW (5),
B

where W((3) is the Wald statistic for & = 0 when the unidentified parameter is fixed at value §3.
The asymptotic distribution is non-standard and can be obtained via simulations.

5.4 Simple transition regression

1. The marginal influence is

0 (81 + Bo/(1 + B37)) _ —B203 — 3,0
Ox =0 (1+ﬁ3$)2 =0 o

So the null is Hy : 3585 + 1 = 0. The t-statistic is

‘= By05 + 1
se(B203)
where 32 and 33 are elements of the NLLS estimator, and 36(3233) is a standard error for

B985 which can be computed from the NLLS asymptotics and Delta-Method. The test rejects

N(0,1
when |[¢| > ql—(a/Q)'

2. The regression function does not depent on x when, for example, Hy : 85 = 0. As under
Hj the parameter 35 is not identified, inference is nonstandard. The Wald statistic for a
particular value of 35 is

and the test statistic is
sup W = sup W (0s) .
B3
The test rejects when sup W > q?_a, where the limiting distribution D is obtained via simu-
lations.
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6. EXTREMUM ESTIMATORS

6.1 Regression on constant

For the first estimator use standard LLN and CLT:

1 n
=0 Z yi 2 Blyi] = B (consistency),

V(B — 8) = % Zei LA N (0,V]e;]) =N (0,62) (asymptotic normality).
Consider

. 1 &
By = rg min {log b+ — 2 (yi — 5)2} . (6.1)
i=1

y?. The FOC for this problem gives after rearrangement:

\ 72 +4y?
Y N T

2 2

-

n J—
Denote 3 = % STy, y? = %
i=1 1

)

B ABy— P =063 =—

The two values Bi correspond to the two different solutions of local minimization problem in
population:

Ely] 3!ﬁ\

Ely? +4Bly*] _ 5 318l

log b +
8 2 2

- (6.2)

1 .
b2( _b)2 _>Hllén<:>bj::_
Note that ﬁ+ 2, by and B_ B b-.If B> 0, then b+ = (3 and the consistent estimate is /62 3+.
If, on the contrary, 3 < 0, then b- = 3 and ﬁQ ﬁ_ is a consistent estimate of 3. Alternatively,
one can easily prove that the unique global solution of (6. 2) is always (. It follows from general
theory that the global solution 3y of (6.1) (which is 3 4 or B_ depending on the sign of §) is then

a consistent estimator of 3. The asymptotics of /62 can be found using the theory of extremum
estimators. For f(y,b) = logb® + b2 (y — b)?,
of(y,B)\?*| _ 4r
b B8’

9f (y,b) 2y —b)? 2w-b) _ g
8f(y,b) 6(y—0b)?*  8(y—0b) g [32f(y,ﬂ)] _ 6

2
b

ob b3 b2
+

o vt b3 ov? RN
Consequently,
3o — N (0
Villy = )% N0, 5)
. n
Consider now 33 = $argmin Y. f(yi, b), where f(y,b) = (b~ly — 1)2 . Note that

i=1

of(y,b) _ 2y* 2y Pf(y.b) _ 6y 4y

0b b2 ob? bt b3

EXTREMUM ESTIMATORS 97



The FOC ISZ jyl—’ —0eb= 9?72 and the estimate is 3; = g = %% -1 J%]I = 3. To find the

asymptotic var1ance calculate

5 Cﬁ@ﬂ@>2_5—54 EPW@J@]_;L
ab ~ 1665 o | 4%

The derivatives are taken at point b = 23 because 23, and not 3, is the solution of the extremum
problem E[f(y, b)] — miny, which we discussed in part 1. As follows from our discussion,

; d k=5 d K —p*
Vb —26) 4 x (0 o Vil —8) SN (0,520 ).
ﬁ 40
A safer way to obtain this asymptotics is probably to change variable in the minimization problem
R n
from the beginning: (33 = argminy Z (l — 1)2, and proceed as above.

No one of these estimators is a pmom asymptotically better than the others. The idea behind
these estimators is: [, is just the usual OLS estimator, 3, is the ML estimator for conditional
distribution ylz ~ N (3, ,6’2). The third estimator may be thought of as the WNLLS estimator for
conditional variance function o2(x,b) = b?, though it is not completely that (we should divide by
o?(x, 3) in the WNLLS).

6.2 Quadratic regression

Note that we have conditional homoskedasticity. The regression function is g(z, 3) = (8 + x)2.
. 2
Estimator § is NLLS, with ag(:v ﬁ) 2(8 4 x). Then Qup = E [(89(%0)> ] = %. Therefore,

BEC
\/_ﬁ_*/\/’( ’28 )

Estimator ﬂ is an extremum one, with

Y
h(z,Y,B) = RCET In[(6 + z)?).
First we check the ID condition. Indeed,
Oh(z,Y,B) 2V 2

o8 (B+ax)? B+a

so the FOC to the population problem is [E [%g’ﬂ)} —20E { gf%} which equals zero iff 5 = 0.

As can be checked, the Hessian is negative on all B, therefore we have a global maximum. Note
that the ID condition would not be satisfied if the true parameter was different from zero. Thus,
B works only for By = 0.
Next,
O?h(x,Y,B) 6Y 2
o7 Brar (e
Then ¥ =E [(— - 2)2} 303 and Q =E [~ + %] = —2. Therefore, Vnp —>N(0, 2s08).

T

We can see that § asymptotically dominates (. In fact, this follows from asymptotic efficiency
of NLLS estimator under homoskedasticity (see your homework problem on extremum estimators).
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6.3 Nonlinearity at left hand side

The FOCs for the NLLS problem are

n Y A 2
0 - 93 i1 ((yz ;‘aa) - ﬁxi) —4 ; ((yz +a)? — B%) (yi +a),
i=1
n ~\2 e 2
S ST SN
i=1

Consider the first of these. The associated population analog is
0=Ele(y+a)],

and it does not follow from the model structure. The model implies that any function of z is
uncorrelated with the error e, but y + «a = £/ + e is generally correlated with e. The invalidity
of population conditions on which the estimator is based leads to inconsistency.

The model differs from a nonlinear regression in that the derivative of e with respect to pa-
rameters is not only a function of x, the conditioning variable, but also of y, while in a nonlinear
regression it is (it equals minus the pseudoregressor).

6.4 Least fourth powers

Consider the population level objective function

Bly—b)| = Blle+(@-ba)]
= B et 463 (B—b)x + 662 (8- b)? 2 +4e (B b)* 2® + (3 — b)* o
= E[e'] +6(8-b)°E[e®.2?] + (8- 0)"E[2*],

where some of the terms disappeared because of independence of x and e and symmetry of the
distribution of e. The last two terms in the objective function are nonnegative, and are zero if and
only if (we assume that x has nongenerate distribution) b = (. Thus the (global) ID condition is
satisfied.

The squared “score” and second derivative are

2
0 (y — ba)*
_ 6, .2
= 1057 g

b=3 b=3

Iy — bw)4 2.2
) = 12¢e“x
ob ’
with expectations 161 [66] E [xQ] and 12K [62] E [xQ] . According to the properties of extremum
estimators, B is consistent and asymptotically normally distributed with asymptotic variance

-1 . l E [66] 1
= B [62])2 E [xg] .

Vs = (12E [*] E [:p2])_1 - 16E [e®] E [2?] - (12E [¢*] E [2?])

Ne)
—~
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When x and e are normally distributed,
5 o?
B 302
The OLS estimator is also consistent and asymptotically normally distributed with asymptotic
variance (note that there is conditional homoskedasticity)

L _E[
OLS — E [Z'2] .
When x and e are normally distributed,
2
UE
Vors = =,
O-af

which is smaller than VB'

6.5 Asymmetric loss

We first need to make sure that we are consistently estimating the right thing. Assume conveniently
that E[e;] = 0 to fix the scale of a. Let F' and f denote the CDF and PDF of e;, respectively.
Assume that these are continuous. Note that

(yi—a—ab)® = (ei+a—a+di(B-b)°
= ¢ +3¢] (a—a+;(8-D))
+3ei(a—a+$;(ﬁ—b))2+(04—a+952(/3_b))3'

Now,

9B [(5s —a =)’ s — a — b > 0] Pr{y: —a— aib > 0}
(1= B [~ 0~ af0)® 5~ a — b < 0] Pr{yi —a — b < 0}
e+ 3e? (o —a+ 2} (8 —10))
— 4 / dF, / +3ei (@ —a+aj(B-0)" | dFy,
ei+a—a+z)(8—b)>0 +(a—a+ Jf; (B — b))3
x(1-EB[F(-(a—a)—a;(8-0))])
e} +3ef (a —a+ (3 —10))

- —w>/dpw/ +3e;(a—a+ai(B-b)° | dF,,
ei+a—a+a;(8—b)<0 +(a—a+z (8- b))3

E[p(yi—a—aip)] =

XE [F (= (a—a)— 2} (8-0))].

Is this minimized at o and 87 The question about global minimum is very hard to answer. Let us
restrict ourselves to the local optimum analysis. Take the derivatives and evaluate them at o and

- =3(—E [e?|ei >0l (1-F(0)+(1—-E [e?lei < 0] F(0)) <E [1331]>7
a<b> a,f
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where we used that infinitisimal change of a and b around « and 8 does not change the sign of e;+a—
a+z; (8 —b). For consistency, we need these derivatives to be zero. This holds if the expression in
round brackets is zero, which is true when E [eZ|e; < 0] /E [eZ|e; > 0] = (1 — F (0)) /F (0)-y/(1—7).

When there is consistency, the asymptotic normality follows from the theory of extremum
estimators. Because

B o [ v from the right,
Ip(u)/0u = 3u { —(1—7) from the left,
) s ol from the right,
Fp(u)/ou” = 6u { —(1—7) from the left,

the expected derivatives of the extremum function are

Op (yi —a — b)) Op (yi — a — x}b)

(RO
= 9’E [egl (;) (;>/|ei > 0} Pr{e; > 0} 4+ 9(1 —7)’E [e;* G) <;>I\ei < 0] Pr{e; < 0}

_ o8 Kl) <1)} (2B [eflei > 0] (1 = F(0)) + (1 = 7)%B [efe; < 0] F(0)).

T T

E [hohy] = E

?p(yi —a~— fféb)
66 1
= 6E [ei (;) <ii>/|ei > 0} Pr{e; >0} —6(1 — y)E [ei <;> <;>/|ei < O] Pr{e; < 0}

6F [( 1) (1 >] (+E [eiles > 0] (1 — F(0)) — (1 — 7)E [ei]es < 0] F(0)).

Zi) \Zi

If the last expression in round brackets is non-zero, and no element of x is deterministically constant,
then the local IC is satisfied. The formula for the asymptotic variance follows.
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7. MAXIMUM LIKELIHOOD ESTIMATION

7.1 MLE for three distributions

1. For the Pareto distribution with parameter A\ the density is

(2]A) = Ap~ (A1), if > 1,
10, otherwise.

Therefore the likelihood function is L = X" [[I"; ; ~OFD and the loglikelihood is ¢;, = nln A —
(A+1) 35 Ina;

(i) The ML estimator ) of ) is the solution of 0ln /0N = 0. That is, A\yL = 1/@,
which is consistent for A, since 1/lnz % 1/E[lnz] = X. The asymptotic distribution
is \/n (XML — )x) <, N (0,171), where the information matrix is I = —E[0s/0\] =
—E[-1/A%] = 1/A?

(ii)) The Wald test for a simple hypothesis is

3 3 (A—=X0)* a

W=nA=NTANA-N) = nT 2%

The Likelihood Ratio test statistic for a simple hypothesis is

LR = 2[ta(}) — ta(0)]

= 2|nlni— (5\+1)Zlnxi— (mmo— ()\o+1)21nxi>]

=1

= 2 nlni— )\ o) Zlnl’z]HX 1).

The Lagrange Multiplier test statistic for a simple hypothesis is
1 = 1| /1 ’
_ . / —1 . _ - - 2
LM = - ;_1 s(xi, M) I(MNo) ;—1 s(xi, No) = - [ E <)\0 1nxz>] G

Ly 2
= n% i> Xg(l).
A

W and LM are numerically equal.

2. Since x1,- -, 2, are from N (u, u?), the loglikelihood function is

n

1 1 n n
£y, = const —nln |u| — 7 (av'—,u)z:const—nln\,u]—Z—lu2 (Zm?—ZuZmian,uQ).
i=1 i=1 i=1
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The equation for the ML estimator is pu? + Zu — 22 = 0. The equation has two solutions

py >0, pp <O0:
1 7 72 4+ 42 1 7 72 1+ 42
b =3 -4\ x4+ 4x4 ], po =g (—T-VaT + 4z ) .

Note that /£, is a symmetric function of i except for the term % >, ;. This term determines
the solution. If Z > 0 then the global maximum of ¢, will be in u;, otherwise in py. That is,

the ML estimator is .
[ = 5 (—a: + sgn(z)\/ 72 + 4?) .

It is consistent because, if p # 0, sgn(z) = sgn(p) and
rs, %> 5 (~Ba -+ sen(Ee) /B + 4822) = 5 (—pu-+ semln) v/ 1 82) = .
3. We derived in class that the maximum likelihood estimator of 6 is
Orr = T(py = max{Ti,- -+, Tn}

and its asymptotic distribution is exponential:

F

n(

bass—) () — exp(t/0) - 1[t < 0] +1I[t > 0].
The most elegant way to proceed is by pivotizing this distribution first:

F

n(

bars—0)/0(t) — exp(t) - I[t < 0] +1[t > 0].

The left 5%—guantile for the limiting distribution is log(.05). Thus, with probability 95%,
log(.05) < n(Opr —0)/0 < 0, so the confidence interval for 6 is

[y, () /(1 +10g(.05) /n)] .

7.2 Comparison of ML tests

1. Recall that for the ML estimator A and the simple hypothesis Hg : A = Ag,
W =n(A=X0) TN (A = X),

LM =23 5w 20 T00) 1S s, Mo).

n = -
i i

2. The density of a Poisson distribution with parameter A is
;

failh) = e,

xZ;:

s0 Az = Z, I(\) = 1/A. For the simple hypothesis with Ag = 3 the test statistics are

W:n(a_:Tj?)V7 ﬁM:%(Zwi/i’)—n)Qi’):M’

and W > LM for z <3 and W < LM for z > 3.
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3.

7.3

The density of an exponential distribution with parameter 0 is

%
)

SR
D

flxi) =

0 Oy = 7, I(0) = 1/6?. For the simple hypothesis with 6y = 3 the test statistics are

2
_ n(z—3)? ! T, n »  n(T—3)?
W = LM_n<zi:32 3)3_ T

and W > LM for0 <z <3and W < LM for T > 3.

. The density of a Bernoulli distribution with parameter 6 is

flai) = 0% (1-0)'~,

so Oy =7, 1(0) = ﬁ. For the simple hypothesis with 6y = % the test statistics are

2
( %) 1 (Ym on=Yw\ 11 (1)’

2 2

and W > LM (since Z(1—z) < 1/4). For the simple hypothesis with 6y = 2 the test statistics

are
- _ 2)2 o N\ 2 2
wenberdh vt (Bmonekm) 2 (a-2)

(1-1) 2 1 33 2 3

—~

8l

therefore W S E/\/l

when 2/9 < z(1 — ) and W > LM when 2/9 > Z(1 — z). Equivalently,
W < LM for 3<T<

ndWZE./\/lfor0<:E§%or <z<l.

wino ('D
wiro

Invariance of ML tests to reparametrizations of null

. Denote by O the set of #’s that satisfy the null. Since f is one-to-one, O is the same under

both parametrizations of the null. Then the restricted and unrestricted ML estimators are
invariant to how Hy is formulated, and so is the LR statistic.

. Recall that

n

LM = % (Zs(zi,éR)) (f(éR))_l (Zs(zi,éR)) ,

=1 i=1

where 9R is the restricted ML estimate. The central matrix involving 7 (9R) is the only factor
that potentially may not be invariant to the reparametrization. Let 6 = (01,02), and Hp
define 0 as an implicit function of #; and the redefined parameter v: 03 = ¢ (61,7) (such
function exists by the Implicit Function Theorem). If 7 is estimated relying on the original
vector of parameters 0, the LM statistic is invariant. But if 7 is estimated using redefinitions
of the score and its derivatives for the set of parameters (01,7), the LM statistic is still
invariant if the expected squared score is used, but is not invariant if the expected derivative
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score is used. The reason is that under Hy,

310g f(zvela d) (0177)) agb (91’7)/ alog f(za 017 ¢ (0177))

00 00 00
0 _ 1 1 2
sr(2,601,7) 96 (01,7) Dlog f(2,01,6 (01,7))
oy 005
= Ms(z,0),
aSR (2,91,’}/) _ 3logf(z,91,gb(91)) 8¢(01)/810gf(2,01,¢(01)) +
89'1 39189/1 001 89269'1
+3¢ (1) 9log f(z,01,¢ (61)) O¢ (61)
a0, 90200, a0,
9%¢ (61) dlog f(z,01,9(61)) ,
+ . -
zj: 90,00 00 K

When using the “average squared score” formula for Z, we construct

-1
n R ’ n . R ’ n .

SR (%‘ﬁlﬁ) (Z SR (%917’?) SR (%91,’7) ) > sk <2i7917’?>
= i=1 i=1

=1

n

n N noo R ~N -1 R R
:Zs(zi,¢9> M’ (ZMS (zi,¢9>s<zi,0> M’) MZZ_;S(%Q)»

=1 i=1

and we see that the factor M cancels out. This does not happen when the “average derivative
score” formula is used for Z because of additional terms in the expression for

0sg (z,01,7)
a (2,91,7), '

3. When f is linear, f(h(0)) — f(0) = Fh(0) — FO = Fh(#), and the matrix of derivatives of h
translates linearly into the matrix of derivatives of g: G = FH, where F = df(x)/0x" does
not depend on its argument x, and thus need not be estimated. Then

w, = o (13000) (on6) " (13200)

—n (% iFh(@)) (FH%H’F’) (5 ZFh(é))
i=1 i=1
~ n (% 3 h(é)) (H%H’)il (% 3 h(é)) = Wh,

but this sequence of equalities does not work when f is nonlinear.
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4. The W statistic for the reparametrized null equals

« 2
n(?l_a—l>
0y —
w

0 — i e\ 0 —a
01 — « ) . 01—«
— 12 122 i

where

= [ 11 t12 S A A

I(ilg 2‘22)’ <I> <i12 i?? )
By choosing a close to 05, we can make W as close to zero as desired. The value of a equal
to (01 — 02i'2/i11) /(1 — i12 /i) gives the largest possible value to the W statistic equal to

n (01 - 92)2

i — (§12)2 /3227

7.4 Individual effects

The loglikelihood is

n

1
L, (Ml:"' ,un,a2) = const — nlog(o ——22 (yi—,ui)2}.
=1
FOC give
R z; + y 1 & . N
flinir, = = 5 : U?\/IL ~ o Z {(901‘ - Mz‘ML)2 +(yi — NiML)Q} )
i=1
so that
1 n
6L = o Z;(iri — ;)%
1=

Since 6311, = 7 Soiey { (@i — ) + (i — 3)? = 2@ — p) (i — )} > G + G — 0= %, the ML
estimator is inconsistent. Why? The Maximum Likelihood method (and all others that we are
studying) presumes a parameter vector of fixed dimension. In our case the dimension instead
increases with an increase in the number of observations. Information from new observations goes
to estimation of new parameters instead of increasing precision of the old ones. To construct a
consistent estimator, just multiply &%4 1, by 2. There are also other possibilities.
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7.5 Misspecified maximum likelihood

1. Method 1. It is straightforward to derive the loglikelihood function and see that the problem
of its maximization implies minimization of the sum of squares of deviations of y from ¢ (x, b)
over b, i.e the NLLS problem. But the NLLS estimator is consistent. Method 2. It is
straightforward to see that the population analog of the FOCs for the ML problem is that
the expected product of pseudoregressor and deviation of y from g (z, 3) equals zero, but this
system of moment conditions follows from the regression model.

2. By construction, it is an extremum estimator. It will be consistent for the value that solves
the analogous extremum problem in population:

~

P px
= E
0L 0" =arg max [f(zla)]

provided that this 6 is unique (if it is not unique, no nice asymptotic properties will be
expected). It is unlikely that this limit will be at true 6. As an extremum estimator, 6 will
be asymptotically normal, although centered around wrong value of the parameter:

Vi (0-607) 4N (0,75).

7.6 Does the link matter?

Let the z variable assume two different values 20 and 2!, u® = a+52% and ng, = #{x; = 2% y; = b},
for a,b = 0,1 (i.e., ngp is the number of observations for which z; = %, y; = b). The log-likelihood
function is

U1, @y Y1, e Yns v, B) = log [TTimy Flo 4 Bai)¥ (1 — F(a + fa;)) 4] =

(7.1)
= ngy log F(u®) 4+ ngolog(1 — F(u®)) + n11 log F(ul) + niglog(1 — F(ul)).
The FOC for the problem of maximization of I(...; a, 3) w.r.t. « and (3 are:
F'(a) F'(a%) F'(a') F'(ah)
[nm F@d) ~ T (a0 + |nu ey~ OTs @y | 0,
~0 1(~0 /(1 11
0 (@) F'(a”) V[ @) Fras) 1 _
v ["01 Fay T ran)| T ™ Fa) M T Fay]
As 2% #£ 2!, one obtains for a = 0, 1
Nal a0 Nal g A > a -1 Na1
= F _ = =F _ 2
Fao)  1-F@n P = it =at b <na1+na0> (7.2)

under the assumption that F'(4?) # 0. Comparing (7.1) and (7.2) one sees that (..., &, 3) does not
depend on the form of the link function F(-). The estimates & and ( can be found from (7.2):

—1 nii _ -1 no1
F (n11+n10 ) F <n01 +noo )

21 _ 20

o n01+"n00 ni1+nio ~
o = 1 0 s ﬁ =
xrt —x

5 () - (st
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7.7 Nuisance parameter in density

The FOC for the second stage of estimation is
1 n
E Z Sc(yi7 Zi, 5/7 6m) - 07
i=1

dlog fe(ylz,v,0)
dy

the y-argument around v, yields

08c(Yi, iy V™, 6
_ZSC ylal‘la’YO’ ) + = Z ( 8’}// )(’7 70) 0
i=1

is the conditional score. Taylor’s expansion with respect to

where s.(y,z,7v,0) =

where v* lies between 4 and 7y, componentwise.
Now Taylor-expand the first term around dq:

1 5 1 . (Yis T Yo 6" ) 2
= se(Yi, i, Yo, Se(Yir Tis Yo, 00) + — RS Om — 00),
n ; c(Yi> i, 70, 0 ; c(Yi, Ti, Yo, 60 ; Y% (6m 0)

where 6* lies between Sm and d¢ componentwise.
Combining the two pieces, we get:

\/ﬁ(ﬁ—%) = —(Ezasc y“xh')/ 6 )

i=1

1 — 0sc(Yi, iy Yo, 0 -
(\/—ZSC yu%;’)’()aéo EZ < Za;«/ 0 )\/ﬁ(ém_éo)>

=1
Now let n — oo. Under ULLN for the second derivative of the log of the conditional density,
821 0
08 fe(y12:70:00) | pore
oyoy
are two terms inside the brackets that have nontrivial distributions. We will compute asymptotic
variance of each and asymptotic covariance between them. The first term behaves as follows:

the first factor converges in probability to —(I77) ™!, where IJ” = —

1 n
T > se(yi i, v0, 80) > N (0,177)
=1

due to the CLT (recall that the score has zero expectation and the information matrix equal-

C (3 (2 75
ity). Turn to the second term. Under the ULLN, - Z Osely: 56, 70:8°) converges to —IJ° =
i=1

2 1 A
5 [8 og fg(%? Yo 60)} . Next, we know from the MLE theory that /n(6,, — o) 4N (0, (181,
Y
2]
where I = - 802({—5%(,0%@0)} Finally, the asymptotic covariance term is zero because of the

“marginal” / “conditional” relationship between the two terms, the Law of Iterated Expectations
and zero expected score.
Collecting the pieces, we find:

Vit =) %N (0,00 (4 1) ().

It is easy to see that the asymptotic variance is larger (in matrix sense) than (ICW)_1 that
would be the asymptotic variance if we new the nuisance parameter dg. But it is impossible to
compare to the asymptotic variance for 4., which is not (I27)~
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7.8 MLE versus OLS

A 1 A 1 A . . 1 P
L. dors = Y i1 Yi> Blaors] = = > i Ely] = a, so Gors is unbiased. Next, = > " y; —

110

Ely] = «, so aors is consistent. Yes, as we know from the theory, d&ors is the best lin-
ear unbiased estimator. Note that the members of this class are allowed to be of the form
{AY, AX = I}, where A is a constant matrix, since there are no regressors beside the con-
stant. There is no heteroskedasticity, since there are no regressors to condition on (more
precisely, we should condition on a constant, i.e. the trivial o-field, which gives just an un-
conditional variance which is constant by the IID assumption). The asymptotic distribution
is

Vn(aors —a) = Zez—w\an E ]),

since the variance of e; is E [62] =FE [E [62\m]] = o’E [a:2] .

. The conditional likelihood function is

n

(yz’—a)Q}'

L(YLsoor Yny T1y orny Ty @, 02 H exp{—T
) ) ) ) ) b ) 2
i=1 /2T 0? 2zi0

The conditional loglikelihood is

n

e( 2)_ t_Z(y’L—a)Q 11 N
n(Yls ey Yny T1y ovvy Ty 1, 0°) = CONS 2 —2331202 5 og o 1;133{

ol,
From the first order condition — = 55 = = 0, the ML estimator is
o a: o

dngL = Z?:l yi/$z2
Z?:l 1/%2

Note: it as equal to the OLS estimator in

The asymptotic distribution is

- FEELL e o [2]) s pon[3]) v oo [2) )

Note that ¢z, is unbiased and more efficient than &prg since

e[2]) "<

but it is not in the class of linear unbiased estimators, since the weights in A,s;, depend on
extraneous x;’s. The &,y is efficient in a much larger class. Thus there is no contradiction.
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7.9 MLE versus GLS

The feasible GLS estimator B is constructed by

n / -1 5
5 Tix; TiYi
- (Z <x;ﬁ>2> Z(w;m?‘

=1 i=1

The asymptotic variance matrix is

The conditional logdensity is

1 (y—a'b)?

1 1
2 2 2
((z,y,b,s%) = const — 5 log s° — 3 log(z'b)* — 552 ()2

so the conditional score is

9 r y—2bxy
s (@ubs) =~ T e

1 1 (y—2'b)?

Sg2 (m,y,b,sQ) = —@—F@W.
Its derivatives are
588 (w,y, b, 82) = (;c/z;Q — (3y — Zx’b) (mf/b)42—32;/,
5802 (:L’,y, b, 52) = —y(;,—lig)%,
s (o) = - RO

Taking expectations, find that the information matrix is

202 + 1 xx' 1
Ip = {

1 T
(‘/B,ﬁ)2:| 3 Iﬂa-z — ;E [m:| 3 1'—0'20'2 —_ F.

By inverting a partitioned matrix, find that the asymptotic variance of the ML estimator of 3 is

~1 202+ 1 xa' x 7\
. —1 / _
Vmr = <Iﬂ,6 — L5271 2,0 502) - < o2 B [(fﬂ'ﬁy} - [%} B [ﬁD '

o2

Now,

1 xx' xx’ x x 1 xx'

—1 -1

= =B 2 (B —E| S| E|S] ) > SE || = Vs

Vil = 755 o) +2 (3] B |75 2 |75]) = B o] v

where the inequality follows from E [aa’] — E[a] E[a'] = E [(a — E[a]) (@ — E[a])'] > 0. Therefore,
VB > Ve, i.e. the GLS estimator is less asymptotically efficient than the ML estimator. This is

because [ figures both into the conditional mean and conditional variance, but the GLS estimator
ignores this information.
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7.10 MLE in heteroskedastic time series regression

Since the parameter v is never involved in the conditional distribution y;|z;, it can be efficiently
estimated from the marginal distribution of x;, which yields

If x; is serially uncorrelated, then x; is IID due to normality, so © is a ML estimator. If x; is
serially correlated, a ML estimator is unavailable due to lack of information, but v still consistently
estimates v. The standard error may be constructed via

1 &
:TZ;U?—A
t=1

if o; is serially uncorrelated, and via a corresponding Newey-West estimator if z; is serially corre-
lated.

1. If the entire function 07 = o(x;) is fully known, the conditional ML estimator of o and 3 is

the same as the GLS estimator:

-G 3) 52(2)
B) L —op \ 7 —of \ v

The standard errors may be constructed via

T 1/ o
A T
VML_T<ZU_%<% x )) '

t=1
2. If the values of O'% at t =1,2,---,T are known, we can use the same procedure as in part 1,
since it does not use values of ag(xt) other than those at 1,29, -+, 7.

3. If it is known that o7 = (0 + 6x4)%, we have in addition parameters 6 and 6 to be estimated
jointly from the conditional distribution

yelze ~ N(a + By, (0 4 620)%).
The loglikelihood function is

—Q —59€t)

T
1
Oy (o, 3,0, 6)—const—§log(9+5wt - Z yt

>

and (a 80 )ML = arg max/,, (o, 3,0,6). Note that

(a7ﬁ?676)

O Eorr (3 2) Sotm(4)
8)mr t=1 (0 + b2 \ Tt xi — 0+ 6x,)2 \ @ )’

~ A\
i. e. the ML estimator of o and (3 is a feasible GLS estimator that uses <9 5) ML as the
preliminary estimator. The standard errors may be constructed via

T 81, (a,ﬁ,é, 8) ¢, (a 3,9,8)
2= "9 (0, 5,0,6)  0(a.3.0,0)

-1

VML:T
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4. Similarly to part 3, if it is known that o? = 6 + éu?_;, we have in addition parameters 6 and
0 to be estimated jointly from the conditional distribution

Y|z, Yye—1, w1 ~ N (a4 Bre, 0 + 6(ye—1 — o — Bri—1)?) .

5. If it is only known that 0% is stationary, conditional maximum likelihood function is unavail-
able, so we have to use subefficient methods, for example, OLS estimation

(0 (502 2)) ()

The standard errors may be constructed via

4 1 =z -z 1 =z T 1 =z -
ff: - T § : t 2 : t 22 Z t
LS ( (wt :L‘% >> . (xt w?)et.< <:pt x% )) ’
t=1 t=1 t=1

where é; = 3 — dors — BO g%t Alternatively, one may use a feasible GLS estimator after
having assumed a form of the skedastic function o?(x;) and standard errors robust to its
misspecification.

7.11 Maximum likelihood and binary variables

1. Since the parameters in the conditional and marginal densities do not overlap, we can separate
the problem. The conditional likelihood function is

n ) . ) 1—y;
ez Yi ez Yi
E(ylv"'?yn7zlv”'72n7’y)_H<1+6,yzi> (1_ 1+6’YZ~L> )

=1

and the conditional loglikelihood —
Co(Y1s ooes Yny 21y ooy 20y 7Y) = Z [yivzi — In(1 + e7%)]
i=1

The first order condition

oty ~ z;eV%
T2 ne - fa| =0

=1

gives the solution 4 = log 2L, where n1; = #{z; = 1,y; = 1}, n1o = #{z; = 1,y; = 0}.

The marginal likelihood furigtion is

n
E(Zh ...,Zn,Oé) = HaZi(]' - Oé)liziv
=1

and the marginal loglikelihood —

n

bn(21, 000y 2n,0) = Y [zilna+ (1 - 2)In(1 — a)]
=1
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The first order condition

% _ Do i _ Do (L —z) —0

Oa « 1—a

gives the solution & = % > i #. From the asymptotic theory for ML,
R a(l —a) 0
A(E)-O) (5" e
v Y 0 —_—
ae?

2. The test statistic is

[oF

—& g
t=——-"——— N 0, 1
s(@—7) 05
. . . (14¢€%)? )
where s(&—%) =1/ a&(l — &) + ~———— is the standard error. The rest is standard (you are
Qe

supposed to describe this standard procedure).
3. For Hy: a = %, the LR test statistic is
LR =2 (En(zl, vy Zny @) — L (21, oey 20, %)) )
Therefore,

* * * 1 n * * kA
LR" =2 <€n <zl, ey 2 ﬁzizl zz> — U (27, ...,zn,a)> ,

where the marginal (or, equivalently, joint) loglikelihood is used, should be calculated at
each bootstrap repetition. The rest is standard (you are supposed to describe this standard
procedure).

7.12  Maximum likelihood and binary dependent variable

1. The conditional ML estimator is

n CI;
~ € 1

n
= argmax Z {cyiz; —log (1 + )} .
c
i=1

The score is

d . e
s(y,2,7) = ER (yyz —log (14 €77)) = <y 1 —|—e”/z) z,

and the information matrix is

0s(y, x, 'y)] [ ex 2}
= g |V gl
J [ oy (1+ e”)zw ’

so the asymptotic distribution of 4,,; is N (0, j‘l).
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YT

The NLLS estimator is

2. The regression is E[y|z] =1-P{y = 1|z} + 0-P{y = 0|z} = e
e

n eCTi 2
o) = arg min Z — .
YNLLS g1l o (yz 1+6cx,->
1=

The asymptotic distribution of 41,5 is N (0, @y, Qgee2Qyy ) - Now, since B [e2]z] = V [y|z] =
YT
c we have

(1+erz)?’

Qgg =E [ e e 4(L'2E [62‘1']:| =K [(63#)6%2] '

2
2’|, Qe =B|——
)4 } Qgg 2 [(1—}—67””) 14+ e

(14 e

Yz
3. We know that V[y|z] = (1677)2, which is a function of . The WNLLS estimator of ~ is
+er

n

, N

A . (1 + 6’711)2 eC%i

TWNLLS = argmin Z o \¥iT .
i=1

1+ ec®i

Note that there should be the true v in the weighting function (or its consistent estimate
in a feasible version), but not the parameter of choice ¢! The asymptotic distribution is

/\/’(O,Q*1 ) , where

g9/0?
1 e2rz err
sz =E 2= [ —— 2> .
Qgg/o> [V [ylz] (1 + 675”)436 } <(1 + eVm)zx

4. For the ML problem, the moment condition is “zero expected score”

ert
E [<y— 1+6W>x] =0.

For the NLLS problem, the moment condition is the FOC (or “no correlation between the
error and the pseudoregressor”)

et et
E|lly— sx| = 0.
1+e¥ /) (14 er®)

For the WNLLS problem, the moment condition is similar:

E r —0
YT e )| T

which is magically the same as for the ML problem. No wonder that the two estimators are
asymptotically equivalent (see part 5).

5. Of course, from the general theory we have Vg < Vivnrcrs < Vrrs. We see a strict
inequality Vivnrrs < VNLLs, except maybe for special cases of the distribution of x, and this
is not surprising. Surprising may seem the fact that Vi = Vivnrrs. It may be surprising
because usually the MLE uses distributional assumptions, and the NLLSE does not, so usually
we have Visrg < Vivnrrs- In this problem, however, the distributional information is used by

all estimators, that is, it is not an additional assumption made exclusively for ML estimation.
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7.13 Bootstrapping ML tests

~

1. In the bootstrap world, the constraint is g(q) = g(fn1), so

LR* =2 | maxt; (q) — max  {p(q) |,
(Onmr)

9€0 7€0,9(q)=g

where £} is the loglikelihood calculated on the bootstrap pseudosample.

~

. In the bootstrap world, the constraint is g(q) = g(fas1), so

n ! _ n o
LM* =n (% Zs(zf,@}?,;)) <f*> 1 (% Zs(zf,&iﬁ) )

i=1 =1

~xR o ~
where HLL is the restricted (subject to g(q) = ¢(0nr)) ML pseudoestimate and Z* is the
pseudoestimate of the information matrix, both calculated on the bootstrap pseudosample.
No additional recentering is needed, since the ZES rule is exactly satisfied at the sample.

7.14  Trivial parameter space

Since the parameter space contains only one point, the latter is the optimizer. If 6; = g, then the
estimator 0p;r, = 6 is consistent for 6y and has infinite rate of convergence. If 61 # 6, then the
ML estimator is inconsistent.

116
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8.

INSTRUMENTAL VARIABLES

8.1

1.

Inappropriate 2SLS

Since Efu] = 0, we have E[y] = o [2?], so « is identified as long as z is not deterministic
zero. The analog estimator is

-1
o= (359) G5
K3

7

Since E[v] = 0, we have E[z] = 7E[z], so 7 is identified as long as x is not centered around
zero. The analog estimator is

-1
% %

Since ¥ does not depend on x;, we have X =V < ZZ ), so X is identified since both u and v
(]
are identified. The analog estimator is

A_l U; U; '
(1))

where u; = y; — dzg and U; = z; — Tx;.

. The estimator satisfies

-1 1
a= <%Zé§> %Zéfyl = (7%4%;1"?) 7%2%;%23/1

1 4P 47 1 2, _ 21 4 1 3, 1 2,2
We know that + > 27 = E (2], + 3 2y = an?+ 3" af + 2am= >, 2dv + az >, 2207 +
% > 2y 2 an?E [xﬂ + ol [w2v2], and # 2 7. Therefore,

a B [1‘21)2]

2 B4 ¢

. Evidently, we should fit the estimate of the square of z;, instead of the square of the estimate.

To do this, note that the second equation and properties of the model imply
E [22|zi] = B [(mzi + v;)?|z;] = ma? + 2B [r2vi|zi] + B [v7|2;] = 7°2f + 0%

That is, we have a linear mean regression of z? on 22 and a constant. Therefore, in the

2

first stage we should regress z2 on 2 and a constant and construct z,? = 7T2$12 + 02, and in

the second stage, we should regress y; on z? Consistency of this estimator follows from the
theory of 2SLS, when we treat z? as a right hand side variable, not z.
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8.2 Inconsistency under alternative

We are interesting in the question whether the ¢-statistics can be used to check Hy : 6 = 0. In order
to answer this question we have to investigate the asymptotic properties of B First of all, under
the null 3 —? Clz,y]/V]z] = BV[x]/V[z] = 0 It is straightforward to show that under the null the
conventional standard error correctly estimates (i.e. if correctly normalized, is consistent for) the

asymptotic variance of B . That is, under the null, ¢g 4, N (0,1), which means that we can use
the conventional t-statistics for testing Hy.

8.3 Optimal combination of instruments

1. The necessary properties are validity and relevance: E[ze] = E[(e] = 0 and E[zz] # 0,
E[¢z] # 0. The asymptotic distributions of 3, and . are

(- 0) 22 (0 (apiig bl 58 E5T))

(we will need joint distribution in part 3).

2. The optimal instrument can be derived from the FOC for the GMM problem for the moment
conditions

E(m (3,2, 2 ¢, 0)] = E [@ - ﬂ@} o,

s[4 -3 ()

From the FOC for the (infeasible) efficient GMM in population, the optimal weighing of
moment conditions and thus of instruments is then

e = 3[()]5()(0) ]
: [(H ()]

E
- ( E[a(|E [i;] E ]E;cc;])‘

Then

That is, the optimal instrument is

(E [xz] B [C262] —E[z(]|E [ZCEQ]) z+ (E [zC¢] E [2262] —Ezz]|E [2@2]) =72 +7C

This means that the optimally combined moment conditions imply

E[(v,24+7¢) (y—pBz)] = 0 <
8 = Bl(rz+70) 2] B (1.2 +7cC) y]
= E[(1.2+7¢) 2] (v.Bleal B, + (B[] Bc)
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where 3, and 3, are determined from the instruments separately. Thus the optimal IV
estimator is the following linear combination of Bz and BC:

N B (o) 8 [(%7] -~ B[o¢]B [2¢e7 :
ol E [z’ B [C262] —2E [:L“Z] [fcd [ZC@Q] +E [fcd [2262]ﬁ

E[z2]°E [g%?] -~ 2E [mz] E [x(] [zge2] + E[2(]?E [22¢2] ¢

3. Because of the joint convergence in part 1, the t-type test statistic can be constructed as
B v (.- )
- \/E 02 2B [(%e?] — 2B 1) B [2¢] 7 B [2Ce?] + B 2] 2B [22¢2]

where E denoted a sample analog of an expectation. The test rejects if |T| exceeds an
appropriate quantile of the standard normal distribution. If the test rejects, one or both of z
and ¢ may not be valid.

8.4 Trade and growth

1. The economic rationale for uncorrelatedness is that the variables P; and S; are exogenous
and are unaffected by what’s going on in the economy, and on the other hand, hardly can
they affect the income in other ways than through the trade. To estimate (8.1), we can use
just-identifying IV estimation, where the vector of right-hand-side variables is x = (1,7, W)’
and the instrument vector is z = (1, P, S)". (Note: the full answer should include the details
of performing the estimation up to getting the standard errors).

2. When data on within-country trade are not available, none of the coefficients in (8.1) is
identifiable without further assumptions. In general, neither of the available variables can
serve as instruments for 7" in (8.1) where the composite error term is yW; + ¢;.

3. We can exploit the assumption that P; is uncorrelated with the error term in (8.3). Substitute
(8.3) into (8.1) to get

logY; = (a+9n) + BT; +yAS; + (i + &) -

Now we see that S; and P; are uncorrelated with the composite error term yv; + ¢; due to
their exogeneity and due to their uncorrelatedness with v; which follows from the additional
assumption and v; being the best linear prediction error in (8.3). (Note: again, the full answer
should include the details of performing the estimation up to getting the standard errors, at
least). As for the coefficients of (8.1), only 3 will be consistently estimated, but not « or +.

4. In general, for this model the OLS is inconsistent, and the IV method is consistent. Thus, the
discrepancy may be due to the different probability limits of the two estimators. The fact that
the IV estimates are larger says that probably Let 0y 2.0 and Oorg 2 0 + a, a < 0. Then
for large samples, 07y ~ 0 and 0prs ~ 0 + a. The difference is a which is (B [z2']) " E[ze].
Since (B [z2/])"! is positive definite, a < 0 means that the regressors tend to be negatively
correlated with the error term. In the present context this means that the trade variables are
negatively correlated with other influences on income.
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8.5 Consumption function

The data are generated by

G = Tt T T (8.1)

Y = s At e (8.2)

where A; = I; + G} is exogenous and thus uncorrelated with e;. Denote 02 = V [e;] and 0% = V [Ay].
1. The probability limit of the OLS estimator of A is

ClY,,¢y) . ClVye] 502 o2

plimj\: = = \+ :/\+(1_/\) e
VY] V(Y] <L>202 L (L)QUQ
i) 747 \1=x

o4 +o2

The amount of inconsistency is (1 — \) 02/ (6% + ¢2) . Since the MPC lies between zero and
one, the OLS estimator of A is biased upward.

2. Econometrician B is correct in one sense, but incorrect in another. Both instrumental vectors
will give rise to estimators that have identical asymptotic properties. This can be seen by
noting that in population the projections of the right hand side variable Y; on both instruments
(I'z according to our notation used in class) are identical. Indeed, because in (8.2) the I; and
G enter through their sum only, projecting on (1, I;, G¢)' and on (1, A;) gives identical fitted

values ]
a

—+ ——A.

[
Consequently, the matrix Q,.Q;. Q" that figure into the asymptotic variance will be the
same since it equals [E [I‘z (I‘z)] Wthh is the same across the two instrumental vectors.
However, this does not mean that the numerical values of the two estimates of (a, )" will be
the same. Indeed, the in-sample predicted values (that are used as regressors or instruments
at the second stage of the 2SLS “procedure”) are &; = ['z; = X'Z (£'Z) " 2, and these values

need not be the same for the “long” and “short” instrumental vectors.'

3. Econometrician C estimates the linear projection of Y; on 1 and C}, so the coefficient at C}
estimated by 0¢ is

. ClY,C] TaTaC 34-(53)203 Aai+oﬂ
v (‘—x)2ai—%<f%x)202  Nohtal

Econometrician D estimates the linear projection of Y; on 1, C;, I3, and GY, so the coefficient at
C} estimated by QSC is 1 because of the perfect fit in the equation ¥; = 0-1+1- Ci+1-1;4+1-Gy.
Moreover, because of the perfect fit, the numerical value of (¢y, ¢g, ¢5, dg)’ will be exactly
(0,1,1,1)".

! There exist a special case, however, when the numerical values will be equal (which is not the case in the problem
at hand) — when the fit at the first stage is perfect.
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9. GENERALIZED METHOD OF MOMENTS

9.1 GMM and chi-squared

The feasible GMM estimation procedure for the moment function

— Z— 4
m(27Q) - 22_612—261

is the following:

1. Construct a consistent estimator 6. For example, set 0 = z which is a GMM estimator
calculated from only the first moment restriction. Calculate a consistent estimator for Q.,m
as, for example,

2. Find a feasible efficient GMM estimate from the following optimization problem

. 1< . 1 <&
0 — fn . / . —1 - i
GMM argqmlnn ;_1 m(2i,q)" - Qum N ;_1 m(zi, q)

The asymptotic distribution of the solution is \/ﬁ(ég Mm—0) 4N (O, %) , where the asymptotic
variance is calculated as

= (Qhm Qi Qom) ™"

Ocmm

with
" a0 (D) mn-simemnt-(4 )

A consistent estimator of the asymptotic variance can be calculated as

’ A A1 AL -1
Ocriv (Q/BQOmQBM) )
where

. 1 & 8m(zi,§GMM) A 1 @ 5 . ,
Qom = — ; — o and Qmm = — ;m(zz‘, Ocrvn)m(2i, )

are corresponding analog estimators.
We can also run the J-test to verify the validity of the model:

1 A NI ) d
J=- ;m(zi,QGMM)’ Qo Em(zz‘, b)) = X2 (1).
i= =
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9.2 Improved GMM

The first moment restriction gives GMM estimator 6 = z with asymptotic variance Vo = V(2] .
The GMM estimation of the full set of moment conditions gives estimator Ogasas with asymptotic

variance Vo = (Q5,,Qmim@am) ~t, where

Qom =E {M] _ (—1)

Jdq 0
and
Qmm = B [m(z,y,0)m(z,y,0)] = ( Xg?y) ggiy) > '
Hence, 2
Veamn =V [z] — %

and thus efficient GMM estimation reduces the asymptotic variance when

Clz,y] #0.
9.3 Nonlinear simultaneous equations

1. Since E[u;] = E[v;] = 0, m(w,0) = (;J _5;2>, where w = <§>, 0 = (ﬁ>, can be used
- 2

as a moment function. The true § and v solve E[m(w, 8)] = 0, therefore E[y] = SE[x] and

E[z] = E [yQ], and they are identified as long as E[z] # 0 and E [yQ] # 0. The analog of the

population mean is the sample mean, so the analog estimators are

LSy LS @

5= :
Ly =3y

» Y=

2. (a) If we add E [u;v;] = 0, the moment function is
y — Bz
m(w,0) = [ = -~y
(y — Ba)(x — vy?)
and GMM can be used. The feasible efficient GMM estimator is

/
. . 1 n - 1 n
Ocaras = arg min (5 > m q>> Qo (5 z;m<wi,q>> ,

qeEO®

where Qpm = LS m(w;, 0)m(w;,0)’ and 6 is consistent estimator of @ (it can be calcu-
lated, from part 1). The asymptotic distribution of this estimator is

Vi@ — 0) 5 N0, Vanru),

where Vo = (Q1,Q5L Qm)~ L. The complete answer presumes expressing this matrix in
terms of moments of observable variables.
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(b) For Hy : B = v = 0, the Wald test statistic is W = nélGMMVGTJ\l/IMéGMM. In order to
build the bootstrap distribution of this statistic, one should perform the standard bootstrap
algorithm, where pseudo-estimators should be constructed as

/
- (1 . 1< . .
Ogymy = argmin (E Zm(wi ) — n Zm(wz’, 9GMM)> Qo %

€0 i1

( Zm Wi, q) Zm wu(gGMM))

=1

and the bootstrap Wald statistic is calculated as W* = n(é*GMM - éGMM)IVG*Xz[IM(é*GMM -
Ocnin)-

(c) Ho is E[m(w,0)] = 0, so the test of overidentifying restriction should be performed:

J=n (% Zm(wiaéGMM)> Qrrn ( Zm wm‘)GMM))

=1 =1

2
where J has asymptotic distribution x2. So, Hy is rejected if J > qé{%.

9.4 Trinity for GMM

The Wald test is the same up to a change in the variance matrix:

W = nh(Bcarn) [HOarn) (ST Hbann) | hOaninr) 5 X2,

where éGMM is the unrestricted GMM estimator, () and 3 are consistent estimators of Q and >,

h(0
relatively, and H(0) = 0 <,)
00
o A
The Distance Difference test is similar to the LR test, but without factor 2, since g 7 85’ 2

2002710
~R - d 2
DD =n [Qn(eGMM) - Qn(eGMM)} = Xg-

The LM test is a little bit harder, since the analog of the average score is
!/
1= 0m(zi,0)\ o 1 1<
=1 =1
It is straightforward to find that

AgA 1AL ~R d
LM = (QGMM) @S N Oannr) = Xo-

In the middle one may use either restricted or unrestricted estimators of 2 and .
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0.5 Testing moment conditions

Consider the unrestricted (3,) and restricted (3,) estimates of parameter 3 € R¥. The first is the

CMM estimate:
1 & e
i=1 i=1

The second is a fea81ble efficient GMM estimate:

3, = argmm( Zmz ) Q7L (%Zmﬂb)) , (9.1)
i=1

where m;(b) = ( s

) , ui(b) = yi — xib, u; = ui(6), and QA,,;},Z is a consistent estimator of

ol 2 / 4
Qo =B pymi()] = | (2 2 ).

wzw U

Denote also Qo = E [877;2(,6)} =E [( 35233 2 )] . Writing out the FOC for (9.1) and expand-

ing m;(3,) around § gives after rearrangement
V(B = B) 2~ (QhymQranQom) ™ Qo Qrra—— f Z mi(B

Here 2 means that we substitute the probability limits for their sample analogues. The last equation
holds under the null hypothesis Hy : E [a:z ] =0.
Note that the unrestricted estimate can be rewritten as

Vir(B, —8) 2B wal] 7 (I Ox ) —= Y mi(B).
Therefore,
VB8, 2 [(Bliai]) " (T Ok )+ (QomQumQom) ' Q@ mm} Zmz 8) % N (O, V),

where (after some algebra)
-1

V=(E [xlx;])fl E [:pzx'uQ] (E [:czx;})fl - (Qiﬁ)mQr_n}nQam)

Note that V' is k£ x k. matrix. It can be shown that this matrix is non-degenerate (and thus has a
full rank k). Let V be a consistent estimate of V. By the Slutsky and Mann-Wald theorems,

5 =12 d
W= n(/gu - ﬁr)lv 1(/314 - ﬁr) - X%'
The test may be implemented as follows. First find the (consistent) estimate 3, given z; and

y;. Then compute Qpm = % dormg (ﬁu)mz (ﬁu) use it to carry out feasible GMM and obtain ﬁr

Use ﬁu or ﬁ,, to find V (the sample analog of V). Finally, compute the Wald statistic WW, compare it
with 95% quantile of x2(k) distribution gg.g5, and reject the null hypothesis if W > qo.g5, or accept
otherwise.
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0.6

1.

9.7

Instrumental variables in ARMA models

The instrument x;_; is scalar, the parameter is scalar, so there is exact identification. The
instrument is obviously valid. The asymptotic variance of the just identifying IV estimator of
a scalar parameter under homoskedasticity is Vz, , = 02Q,2Q... Let us calculate all pieces:

Q.. =& |:x?_j] =Viz] =02 (1- ,02)71 i Quz = Elvy1mi—j] = Clay—1, m—j] = pP Wiz =

o?pi—1 (1 — p2)71. Thus, Vg, , = > (1 — p2) . It is monotonically declining in j, so this
suggests that the optimal instrument must be x;_1. Although this is not a proof of the fact,
the optimal instrument is indeed z;_1.. The result makes sense, since the last observation is
most informative and embeds all information in all the other instruments.

. It is possible to use as instruments lags of y; starting from y;_s back to the past. The regressor

yt—1 will not do as it is correlated with the error term through e; 1. Among vy; o, y:_3, - - - the
first one deserves more attention, since, intuitively, it contains more information than older
values of y;.

Interest rates and future inflation

. The conventional econometric model that tests the hypothesis of conditional unbiasedness of

interest rates as predictors of inflation, is
m = ok + Brif +nf, By [Uﬂ =0.
Under the null, a, = 0, 8, = 1. Setting £ = m in one case, k = n in the other case, and
subtracting one equation from another, we can get
T = W= = an A+ Bty = Bpiy oy — g B[ — "] = 0.

Under the null oo, = ap = 0, 5,,, = B,, = 1, this specification coincides with Mishkin’s
under the null ap,,, =0, B,,,, = 1. The restriction 3, ,, = 0 implies that the term structure
provides no information about future shifts in inflation. The prediction error n;"" is serially
correlated of the order that is the farthest prediction horizon, i.e., max(m,n).

. Selection of instruments: there is a variety of choices, for instance,

!/
<17 Z;n - 7;?7 Z.?ll - igil? iﬁQ - 21127 ﬂ-ﬁmax(m,n) - W?fmax(m,n)> )
or ,
(17 ZT? Z?? Z.?il? é?—l’ 7T?imax(m,n) ) ﬂ—?fmaﬁx(m,n)> ’
etc. Construction of the optimal weighting matrix demands Newey-West (or similar robust)
procedure, and so does estimation of asymptotic variance. The rest is more or less standard.

. This is more or less standard. There are two subtle points: recentering when getting a

pseudoestimator, and recentering when getting a pseudo-.J-statistic.

. Most interesting are the results of the test 3,, , = 0 which tell us that there is no information

in the term structure about future path of inflation. Testing (3, , = 1 then seems excessive.
This hypothesis would correspond to the conditional bias containing only a systematic com-
ponent (i.e. a constant unpredictable by the term structure). It also looks like there is no
systematic component in inflation (o, , = 0 is accepted).
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9.8 Spot and forward exchange rates

1. This is not the only way to proceed, but it is straightforward. The OLS estimator uses
the instrument ztOLS = (1 mt)', where z; = f; — s;. The additional moment condition adds
ft—1—8¢—1 to the list of instruments: z; = (1 xy mtfl)/ . Let us look at the optimal instrument.
If it is proportional to ztOLS , then the instrument x;_ 1, and hence the additional moment
condition, is redundant. The optimal instrument takes the form (, = ngQ;ﬁnzt. But

1 E[xzy] 1 E[z] E[xi—1]
Qom=—| Elz E[z7] , Qmm=0"| B[] Elzf]  Blrw]
Elzi—1] Blriri—q] Blz;—1) Blrmw1] Elzf ]

It is easy to see that
_ _ 100
Q'aQOifcr?(o 1 0)’

which can verified by postmultiplying this equation by Q. Hence, ¢, = J*ZZ,SOLS . But the
most elegant way to solve this problem goes as follows. Under conditional homoskedasticity,
the GMM estimator is asymptotically equivalent to the 2SLS estimator, if both use the same
vector of instruments. But if the instrumental vector includes the regressors (z; does include
ztO LS ), the 2SLS estimator is identical to the OLS estimator. In total, GMM is asymptotically
equivalent to OLS and thus the additional moment condition is redundant.

2. We can expect asymptotic equivalence of the OLS and efficient GMM estimators when the
additional moment function is uncorrelated with the main moment function. Indeed, let
us compare the 2 x 2 northwestern block of Vayy = (Q'amenlmQam)fl with asymptotic
variance of the OLS estimator

Vous =o*( ey )

Denote A fy11 = fiy1 — fi. For the full set of moment conditions,

1 E[{L’t] (72 UZE[xt] E[xt€t+1Aft+l]
Qom = — | Elz] Elz7] |, Qumm= o’ Bla,] o?B[z7] Elzferr1A fiv1]
0 0 Elzier1Afir1] ElrfernAfia]  Blaf(Afi)?]

It is easy to see that when E[zse; 1A fir1] = Elx?es 1A fii1] = 0, Quum is block-diagonal and
the 2 x 2 northwest block of Vs is the same as Vprg. A sufficient condition for these two
equalities is Ele; 1A fi41]|l¢] = 0, i. e. that conditionally on the past, unexpected movements
in spot rates are uncorrelated with unexpected movements in forward rates. This is hardly
satisfied in practice.

9.9 Minimum Distance estimation

1. Since the equation 6y — s(7¢) = 0 can be uniquely solved for v, we have

Yo = argmin (6o — s(7)) W (6 — 5()).
yel’
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For large n, 0 is concentrated around 0o, and W is concentrated around W. Therefore, ¥5,p
will be concentrated around 7,. To derive the asymptotic distribution of 4,,p, let us take the
first order Taylor expansion of the last factor in the normalized sample FOC

0=S(Hyp)Wvn (é - S(PAYMD))
around ,:
0= SHnp)Wn (é - 90) — SAup) WSFH)V1 (Yarp —Y0) »
where ¥ lies between 4,,p and v, componentwise, hence 7 2, Yo- Then

o -1 o N
Vi (Gmp — %) = (S('AVMD),WS('W) S(Anp)W/n (9 — 00>
d -1
= (S(v0)WS(79)) S(70)WN (0,V)

-1 -1
= N (0, (S(r0) WS(30)) ™" S(30) WV W S(30) (S(r0) WS(70) ™) -
2. By analogy with efficient GMM estimation, the optimal choice for the weight matrix W is
Vgil' Then
2 d -1 -1
Vi (Yup —70) = N (0, (S(’Yo) Vi S(’Yo)) > :

The obvious consistent estimator is V,'. Note that it may be freely renormalized by a
constant and this will not affect the result numerically.

3. Under Hy, the sample objective function is close to zero for large n, while under the alter-
native, it is far from zero. Let us take the first order Taylor expansion of the “root” of the
optimal (i.e., when W = 1/{1) sample objective function normalized by n around ~,:

n (é - SWMD))IW (é - S(’?MD)) =¢'¢ €= \/ﬁwl/2 (é - 5(’7MD)> )

& = VAW (0—0o) — vl S(3) (asp —0)
= (fg = V528 (30) (S0)'Vy 1800)) sm»'vg”) v, v (0 0)
4 (zg V25 (00) (S(0) 'V S (0)) sm)'v@m) N(0,11).

Thus under Hy /
n (9 - 5(7MD)> W (9 - 5(’7MD)> 4, X%#c'

4. The parameter of interest p is implicitly defined by the system

The matrix of derivatives is
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The OLS estimator of (61,63) is consistent and asymptotically normal with asymptotic vari-
ance matrix

—1
v g2 | E[w] E[ytytl]:| _1—ﬂ4[1+p2 —2p]

0 Elyiye-1] B [y?] 14 p2 —2p 14 p?
because
1+ p? Elytyi—1 2p
E [th] _ 2 [Yey—1] B

TA=A B T+

An optimal MD estimator of p is

A~ !/ ~
oo in (32) = () 2 Lo " 1 (G) - (22)
= arg min A = . . A =
PmMD gp:|p|<1 <<62 —p? ; YtYt—1 th 02 —p?
and is consistent and asymptotically normal with asymptotic variance
ooy VY A 1 [ 12 (1)) 1A
Pup = \"\=p) (1—p2)°L+p> [ 20 1 —p 4

To verify that both autoregressive roots are indeed equal, we can test the hypothesis of correct
specification. Let 62 be the estimated residual variance. The test statistic is

A / n ~ R
1 <91> _ <2ﬁMD> 5 [ Y Ui ] ‘ (91> B <2PMD>
6% \ \02 —Pirp — | Yty Y7 0 —%p

and is asymptotically distributed as x?.

9.10 Issues in GMM

2
1. We know that E[w] = p and E [(w - ,u)4] =3 (E [(w - ,u)2]> . It is trivial to take care of

128

the former. To take care of the latter, introduce a constant 02 = [(w — M)Q} , then we have
E [(w — u)ﬂ =3 (02)2 . Together, the system of moment conditions is
w—=p

E (w — p)? — o2 = 0.
(w-w'-30>* /]

. The argument would be fine if the model for the conditional mean was known to be correctly

specified. Then one could blame instruments for a high value of the J-statistic. But in our
time series regression of the type By [yy11] = g(z¢), if this regression was correctly specified,
then the variables from time ¢ information set must be valid instruments! The failure of
the model may be associated with incorrect functional form of g(-), or with specification of
conditional information. Lastly, asymptotic theory may give a poor approximation to exact
distribution of the J-statistic.
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3. The correct definition of irrelevant instruments applies to the whole set of instruments: the
set of instruments is relevant if the matrix @, has full rank k& (given also that the matrix
@ is non-singular). If this condition holds, there are no consequences; if not, there will
be underidentification and the GMM problem will be ill-defined (in particular, it will give
many solutions or solutions with no good asymptotic properties). However, one may think of
another definition of irrelevant instruments: irrelevant instruments are those not correlated
with right-hand-side variables. Then the presence of such instruments does not influence the
GMM use at all (given that the matrices @, and Q.. are still of full rank). In fact, it is easy
to derive that such instruments may not even be redundant given others!

4. The population analog of " | g(z,q) = 0 is E [g(z, ¢)] = 0. Thus, if the latter equation has

a unique solution 0, it is a probability limit of . The asymptotic distribution of 0 is that of
the CMM estimator of 6 based on the moment condition E[g(z,0)] = 0:

NG (é _ 9) LAY, (0, (B [9g(2,0)/00']) " E [g(z,0)9(2,0)] (E [0g(z, 0)'/89])*1) .

5. If instead of m(z;,q) in the GMM problem and in construction of the efficient weight matrix
we will use Cm(z;, q), the matrix C will cancel out:

Ocm = argmin (% ZC’m(zi, q)) (% ZCm(zi,@g) (C’m(zi7 é0)>/> (% Z Cm(zi,q)>

€0 i—1
-1

= argmin (l Zm(zi,q)> ' (C')_l (l Zm(zi,éo) (m(zi,éo))/> c1
€@ \"i5 [t
<C (% Zm<zi,q>>
1 "1 AR -
= argmin (E > miz, Q)> (5 > m(zi,00)m(z;, 90)') (ﬁ > m(z, Q))
= : i=1

= emv
where it is presumed that the preliminary estimator 90 is the same. If it is not, we lose

invariance: the first step 90 will change if the first step weight matrix is the same (for example,
I).

0.11 Bootstrapping GMM

1. Indeed, we are supposed to recenter, but only when there is overidentification. When the
parameter is just identified, as in the case of the OLS estimator, the moment conditions hold
exactly in the sample, so the “center” is zero anyway.

2. Let 6 denote the GMM estimator. Then the bootstap DD test statistic is

DD*=n| min Q) (q) —minQ(q)|,
q:h(q)=h(9) ?
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where Q7 (q) is the bootstrap GMM objective function
1o . 1 & ol 1< .
= E;m(’zi’Q)_E;m<zlv > E Zm z7q _Ezlm(%ae) )
= 1= i=

where 3* uses the formula for ¥ and the bootstrap sample. Note two instances of recentering.

9.12 Efficiency of MLE in GMM class

The theorem we proved in class began with the following. The true parameter 6 solves the maxi-
mization problem

0 = E[h
arg max [h(2,q)]

with a first order condition

Jq Ex1

Consider the GMM minimization problem

B | 5oh(=0)] = 0,

0 = arg EéiélE [m(z, q)]/ WE[m(z,q)]

with FOC

IR [a%/m(z’e)],WE [m(z,0)] = k(x)f

or, equivalently,
9 '
E [E [8—qm(z,0) ] %% m(z,H)] 91

Now treat the vector E {82

m(z, 9)’} Wm(z,q) as %h(z, q) in the given proof, and we are done.
q
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10. PANEL DATA

10.1 Alternating individual effects

It is convenient to use three indices instead of two in indexing the data. Namely, let
t=2(s—1)+gq, where ¢ € {1,2}, se{l,---,T}.

Then ¢ = 1 corresponds to odd periods, while ¢ = 2 corresponds to even periods. The dummy
variables will have the form of the Kronecker product of three matrices, which is defined recursively
as AR B (C=A® (B ().

Part 1. (a) In this case we rearrange the data column as follows:

) Yi1 n
Yis1
Yisq = Yit, Yis = (y )7 Yi = , Y= )
152 yir Un
and pu = (u@ u¥ --- pQ pP). The regressors and errors are rearranged in the same manner as y’s.
Then the regression can be rewritten as
y=Du+ X5+, (10.1)

where D = I, ® i ® Iz, and ip = (1 --- 1)’ (T x 1 vector). Clearly,

D'D=1,@ipir @ Iy =T - Iy,
1 y 1
AMUMAUZf%®W#®b=fh®h®&

where Jr = irif. In other words, D(D'D)~1D’ is block-diagonal with n blocks of size 2T x 2T of
the form:

1 1
7 0 7 0
0+ 0 4

T T
7 0 . 7 0
0 7 « 0 7

The @Q-matrix is then Q = I, — %In ® Jr ® Is. Note that ) is an orthogonal projection and
@D = 0. Thus we have from (10.1)

Qy = QXS+ Qu. (10.2)

Note that %JT is the operator of taking the mean over the s-index (i.e. over odd or even periods
depending on the value of ¢q). Therefore, the transformed regression is:

Yisq — giq = (xisq - i'iq)lﬁ -+ U*, (103)

where g;, = 23:1 Yisq-
(b) This time the data are rearranged in the following manner:

Yi1 Yq1 n
Yqis = Yit; Yqi = 5 Yg = Y= )

YyiT Ygn Y2
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pw= Wl - pQ uf - pF). In matrix form the regression is again (10.1) with D = I, ® I, ® ir,

and
1 1
D(D'D)'D’ = 7L @@ iriy = b @1, @ Jr.

This matrix consists of 2n blocks on the main diagonal, each of them being %JT. The Q-matrix is
Q= It — %Ign ® Jr. The rest is as in part 1(b) with the transformed regression

Ygis — Yqi = (mqis - fqi)lﬁ + U*, (10.4)

with g4 = 23:1 Yqis, Which is essentially the same as (10.3).
Part 2. Take the Q-matrix as in Part 1(b). The Within estimator is the OLS estimator in
(10.4), i.e. B = (X'QX)~1X'QY, or

-1

B= > (wgis — Tai)(@gis = Tas)' | > _(¥qis — Tas) (Yais — Yas)-

q?7/7s q?l?s

Clearly, E[B] = 3, B 2. 8 and 8 is asymptotically normal as n — oo, T fixed. For normally
distributed errors vy;s the standard F-test for hypothesis

Ho:pf =pf = ... =puG and pf = pg = ... = pff
is
(RSSE — RSSU)/(2n — 2)

F=
RSSY/(2nT — 2n — k)

Ho
T F(2n—2,2nT — 2n — k)

(we have 2n — 2 restrictions in the hypothesis), where RSSY = Y isqWais — Ygi — (Tgis — Zqi) B)?,
and RSS® is the sum of squared residuals in the restricted regression.
Part 3. Here we start with

Yqis = xiﬂsﬁ + Uqgis, Uqgis - Hgi + Vqis, (105)

where py; = u$ and py; = puF; Elpty] = 0. Let 03 = 03, 03 = 0%, We have

E [uqisuq’i’s’] =K [(qu + qus)(,uq’i’ =+ Uq’i’s’)] = Ugéqq’ iir Lsst + Ugéqq’éii’éss’y
where 64 = {1l if a=a’, and 0 if a # d'}, 1434 = 1 for all s, s’. Consequently,

/ O'% O 2 2 2 1 O 1
Q = Eluw]= 0 o3 ® Ip @ Jp + oplonr = (To] + 03) 0 0 I, R ?JT +
0 0

+(T0’% +0'12)) ( 0 1

1 1
The last expression is the spectral decomposition of €2 since all operators in it are idempotent

symmetric matrices (orthogonal projections), which are orthogonal to each other and give identity
in sum. Therefore,

- _ 10 1 - 00 !
Q2 = (To}+02) 1/2<0 0>®I”®?JT+(TU§+UE) 1/2<0 1>®I"®TJT+

1
+o, ' L®I, ® (It — ZJ1)-

The GLS estimator of 3 is R
g=(X'Q X)X’ ty.
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To put it differently, B is the OLS estimator in the transformed regression
avﬁfl/zy = UUQ%/ZXﬂ + u*.
The latter may be rewritten as

Ygis — (1 — \/a_q)gqi = (Tgis — (1 = \/%)jqi),ﬁ +u’,

where 0, = 02/(02 + To2).

To make @ feasible, we should consistently estimate parameter ¢,. In the case 0?2 = 02 we may
apply the result obtained in class (we have 2n different objects and T" observations for each of them
— see part 1(b)):

2n —k ' Q1
2n(T —1) —k+ 14/ Pa’
where 4 are OLS-residuals for (10.4), and Q = Is,.7 — %Ign ® Jr, P = Isp,r — Q. Suppose now that
0? # o2. Using equations

0=

1

TU?) + o2

E [ugis] = 02 + 03; E[u;s) = ph
and repeating what was done in class, we have

n—=k W' Qqt
Wl —1)—k+1aBa

fy =

. 10 0 0 1 0
with Ql = < 00 >®In®(IT_%JT)7Q2 = < 0 1 )®In®(IT_%JT)aP1 = ( 0 0 )@IM@%JT,

00 1
P2:<O 1>®In®TJT-

10.2 Time invariant regressors

1. (a) Under fixed effects, the z; variable is collinear with the dummy for p;. Thus, 7 is uniden-
tifiable.. The Within transformation wipes out the term z;v together with individual effects
Wi, so the transformed equation looks exactly like it looks if no term z;y is present in the
model. Under usual assumptions about independence of v;; and X, the Within estimator of
[ is efficient.

(b) Under random effects and mutual independence of yi; and v, as well as their independence
of X and Z, the GLS estimator is efficient, and the feasible GLS estimator is asymptotically
efficient as n — oo.

2. Recall that the first-step B is consistent but 7;’s are inconsistent as T stays fixed and n — oc.
However, the estimator of v so constructed is consistent under assumptions of random effects
(see part 1(b)). Observe that 7; = g; — ;5. If we regress 7; on z;, we get the OLS coefficient

Sz it Zi (?Jz' - 523) i 7 (féﬁ + 2y + p + 0 - fiﬁ)

D i1 21‘2 D1 ziz > et Zz'z
1 1 - 1 _
Qi Billi |y i 2 1 h D i 2T (ﬁ _ B) '

+ n
% Z?:l Zz'Q % Z?:l Zi2 % Z?:l 27

5
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Now, as n — oo,

1 1<
—ZZ?&E[ZE]7£0= Ezzz’ng[%m]:E[Zi]E[Mi]:Ov
=1 i=1

1 & 1 &
-~ E 1 20; 2 B [20;) = B[] E[v;] = 0, - § 1 %7, 5 B (7], B-5 0.
1= 1=

In total, 4 2 ~. However, so constructed estimator of 7y is asymptotically inefficient. A better
estimator is the feasible GLS estimator of part 1(b).

10.3 Differencing transformations

1. OLS on FD-transformed equations is unbiased and consistent as n — oo since the differenced
error has mean zero conditional on the matrix of differenced regressors under the standard FE
assumptions. However, OLS is inefficient as the conditional variance matrix is not diagonal.
The efficient estimator of structural parameters is the LSDV estimator, which is the OLS
estimator on Within-transformed equations.

2. The proposal leads to a consistent, but not very efficient, GMM estimator. The resulting error
term v; ; — v; 2 is uncorrelated only with y; 1 among all y;1,--- ,y; 7 so that for all equations
we can find much fewer insruments than in the FD approach, and the same is true for the
regular regressors if they are predetermined, but not strictly exogenous. As a result, we lose
efficiency but get nothing in return.

10.4 Nonlinear panel data model

1. Following the hint, we can base consistent estimation on the following moment conditions
that are implied by the model:
o-=[(2)]
ex

The corresponding CMM estimator results from applying the analogy principle:

O_i(((@ri‘d)?—éxi )

i—1 yi +a)* — B%) Z;

According to the GMM asymptotic theory, (&, 3)’ is consistent for (v, 3)’ and asymptotically
normal with asymptotic variance
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2. The nonlinear one-way ECM with random effects is
(yit + )2 = Bagy + p; + vie, g ~ 1ID(0, 02), it ~1ID(0,02),

where individual effects p,; and idiosyncratic shocks v;; are mutually independent and in-
dependent of x;. The latter assumption is unnecessarily strong and may be relaxed. The
estimator of part 1 obtained from the pooled sample is inefficient since it ignores nondiag-
onality of the variance matrix of the error vector. We have to construct an analog of the
GLS estimator in a linear one-way ECM with random effects. To get preliminary consistent
estimates of variance components, we run analogs of Within and Between regressions (we call
the resulting estimators Within-CMM and Between-CMM):

) 1 Z 1 X
(yir + )" = [ @y — T Z Tit | + Ui — T Z Vit
t=1 t=1

T T
1 1
(i + @) = /BT § Tit + i+ E Vit
t=1 t=1

=l
N

(yit + 04)2 -

t=1

Nl =
W

t

1

Numerically estimates can be obtained by concentration as described in part 1. The estimated
variance components and the “GLS-CMM parameter” can be found from

2 RSSW

. RSS n—2
5 _ RSSw
 Tn—-n-2’ H = 0

T T(n-2) RSSp Tn—n—2

o

Note that RSSy and RSSp are sums of squared residuals in the Within-CMM and Between-
CMM systems, not the values of CMM objective functions. Then we consider the FGLS-
transformed system where the variance matrix of the error vector is (asymptotically) diago-
nalized:

(yit + @) — (1 - \/5) %i (yir +a)* =3 (mit - (1 — \/§> %gxzt) 4 o

term
t=1

10.5 Durbin—Watson statistic and panel data

1. In both regressions, the residuals consistently estimate corresponding regression errors. There-
fore, to find a probability limit of the Durbin—Watson statistic, it suffices to compute the
variance and first-order autocovariance of the errors across the stacked equations:

plimDW = 2 <1 - ﬂ) ,

n—00 Qo

where

. 1 T n ) ' 1 T n
go=plim—% > uj, oy =plm—> % wiuis1,

n—oo t=1 i=1 n—oe t=2 i=1

and wu;’s denote regression errors. Note that the errors are uncorrelated where the index
it switches between individuals, hence summation from ¢ = 2 in p;. Consider the original
regression

Yt =B +uy, i=1,---.n, t=1--,T.
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where u;; = p; + vie. Then g = a% + o*i and

1< 18 T-1
Q=7 gplimﬁ Z (s +vie) (1 + vig—1) = T Ui.

n—oo Tt £
= =1

Thus

T_-1 o2 To? + o2
limDW, =2(1l-—-"t | =o—
Do oS ( T o2+ O'i) T (024 02)

The GLS-transformation orthogonalizes the errors, therefore

plimDWqarg = 2.

n—oo

. Since all computed probability limits except that for DWprs do not depend on the variance

components, the only way to construct an asymptotic test of Hy : ai =0vs. Hy: ai >0

is by using DWors. Under Hy, vnT (DWors — 2) . N (0,4) as n — oo. Under Hy,

plimDWpors < 2. Hence a one-sided asymptotic test for ai = 0 for a given level « is:
n—oo

Z,
Reject if DWors <2 |1+ —= ),
) OLS ( W)

where z, is the a-quantile of the standard normal distribution.
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11. NONPARAMETRIC ESTIMATION

11.1 Nonparametric regression with discrete regressor

Fix a¢j), j=1,...,k. Observe that

E(yl[z; = a;))
E(]I[l’z = a(J)])

glag)) = Blyilwi = a)] =

because of the following equalities:
Bl[z;=ap]] = 1-P{oi=a@}+0-Plos # ag} = Plas = agy},

B[yl [z = a)]] = Byl e =] e = ag)] - Plas = oy} = B [miles = ag)] - Plas = o }-

According to the analogy principle we can construct g(a;)) as

> i1 Yill [z = agj)]
i Iai = a(j)]

Now let us find its properties. First, according to the LLN,

iciyil [z = ag)] p Blydlei = ag)]]
Yimllzi=ap]  BEllzi = ag)]]

glag)) =

9(ag) = = g(agj))-

Second,
2izy (4 ~ B lyilei = a)]) Lz = ag)]

N (g(a(j)) - g(a(j))) =vn gl [9:1 = a(j)]

According to the CLT,

1
77 2= (1= B [l = o)) i = agp] 5 A (0,),
i=1
where
w = V(i —B[pilzi = o)) [z = agy)] = B | (4 — B [yili = ay))* 2 = agy)| Pls = agy)}
= V[yilwi = ag] P{ai = a;)}-
Thus

V\yilz: = a;
Vi (9ag) = 9lag)) SN (07 H) |

11.2 Nonparametric density estimation

(a) Use the hint that E[I [x; < z]] = F(x) to prove the unbiasedness of estimator:
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(b) Use the Taylor expansion F(z + h) = F(z) + hf(z) + $h2f'(z) + o(h?) to see that the bias
of fi(x) is

BAi(@)] - f@) = h7 (F(e +h) = F@) - (=)
= (F (@) +hf () + 312 (@) + olh?) ~ F(a)) — f(z)
- %hf’(:v) +o(h).

Therefore, a = 1.

H

(c) Use the Taylor expansions F (3: +8) =F@)+Lf(z)+1 (%) f(z) + (ﬁ)?’f"( ) + o(h3)
and F (z—2%) = F(z) - 2 +3 (%)Qf’(:zj — 3 (%) f"(x) + o(h?) to see that the bias of
fg(m) is

B [fo(w)] — Fla) = ™ (F(e 4+ h/2) — Fla— h/2)) — f(x) = 52127 (2) + ofh?).
Therefore, b = 2.

Let us compare the two methods. We can find the optimal rate of convergence when the bias
and variance are balanced: variance o bias?. The “variance” is of order (nh)_1 for both methods,
but the “bias” is of different order (see parts (b) and (c)). For fi, the optimal rate is h o< n=1/3,
for fo — the optimal rate is h oc n= /. Therefore, for the same h, with the second method we need
more points to estimate f with the same accuracy.

Let us compare the performance of each method at border points z () and at a median point Zp,.
To estimate f(x) with approximately the same variance we need an approximately same number
of points in the window [z, z + h] for the first method and [x — h/2, 2z + h/2] for the second. Since
concentration of points in the window at a border is much lower than in the median window, we
need a much bigger sample to estimate the density at border points with the same accuracy as at
median points. On the other hand, when the sample size is fixed, we need greater h for border
points to meet the accuracy of estimation with that for in median points. When h increases, the
bias increases with the same rate in the first method and with the double rate in the second method.
Consequently, fl is preferable for estimation at border points.

11.3 First difference transformation and nonparametric regression

1. Let us consider the following average that can be decomposed into three terms:

n

n i 1 > (Wi —yi)* = - i 7 > (g(z) = gzi-1))" + ~ i - > (e —ei1)?
=2 =2 =2
23 (0l — gl e — ).

1=2

+

Since z; compose a uniform grid and are increasing in order, i.e. z; — z;—1 = ﬁ, we can find

the limit of the first term using the Lipschitz condition:

ST PN i B
—1 o “—n-—1 ¢ ' (n—1)2 n—oo

=2 =2
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Using the Lipschitz condition again we can find the probability limit of the third term:

n n

S (g(z) — 9(z1)) e — ei1)| < ey D SICR
(n

=2

2
n—1

n
7”L—17”L—1Z:‘ez‘+’eZ 1) ooO
1=2

since-2% = 0 and —L5 3" (Jeg| + |ei—1]) n%OO 2E |e;] < oo. The second term has the
following probability limit:

n

1
— 1 —ei—1)° = p— ; (e? — 2ejei—1 + 622,1) n%oo 2FE [e?] = 202,

Thus the estimator for 02 whose consistency is proved by previous manipulations is

n

1 1
~2 . 2
0% =53 ,E:g(yl Yi-1)".

2. At the first step estimate 3 from the FD-regression. The FD-transformed regression is

Yi — Vi1 = (@ — xim1)' B+ g(zi) — 9(zi—1) + €; — ei1,

which can be rewritten as
Ay; = AziB+ Ag(z) + Ae;.

The consistency of the following estimator for 3

n -1 n
= Az;Ax, Azx;Ay;
(Sens) (Roman)

can be proved in the standard way:

n -1 n
. 1 , 1
B—p= (n — ;_2 A:U,-Axi) <—n — E Azi(Ag(z) + Aei)>

i=2
1 n / 13 fnd 1 n p .
Here — > " o Az;Az; has some non-zero probability limit, —5 > """, Ax;Ae; T 0 since

Ele;|xi, 2zi] = 0, and

LS, AxiAg(zi)’ < LS | Ayl goo 0. Now we can use

standard nonparametric tools for the “regression”

—w,@’—g(zz)—i- €5

where e = e; + 2}(3 — 3). Consider the following estimator (we use the uniform kernel for
algebraic simplicity):
o)~ D= = 2 <)
2 i1

' 1|z — 2| < A

It can be decomposed into three terms:

=Tk (96z0) + 248 = B) + i) Tllzi — 2| < H]
o) = AN PEFEY)
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The first term gives g(z) in the limit. To show this, use Lipschitz condition:

S i(9(zi) — g(2)I |z — 2| < Al
ST Te-z<m | =0t

and introduce the asymptotics for the smoothing parameter: h — 0. Then

SIoGlln =l <A Y (0() + o) gl — 2 < h]
> Iz — 2| < A i Lllzi — 2l < 1]

o T @ E A<

IR > Y| PR T R

The second and the third terms have zero probability limit if the condition nh — oo is satisfied

> iz il [lzi — 2| < A

e p
DI CEE R e =
Iz b
0

E [x}]

)

and ZTL ]IH | < h]
i1 Cill||z — 2] < » L
2?21 I sz — z| < h] njoo E [62] =0.

—

Therefore, g(z) is consistent when n — oo, nh — oo, h — 0.

11.4 Perfect fit

When the variance of the error is zero,

(nh) ™" 20y (g(x:) — 9(2)) K <x b $>
(nh) 'S0 K <¥> |

9(z) —g(x) =

There is no usual source of variance (regression errors), so the variance should come from the
variance of x;’s.

The denominator converges to f(x) when n — oo, h — 0. Consider the numerator, which we
denote by ¢(z), and which is an average of IID random variables, say ;. We derived in class that

E[d(x)] = h*B(x)f(x) + o(h?), VI[§(x)] = o((nh) ™).
Now we need to look closer at the variance. Now,

r; — &

E[G] = hz/(g(xi)—g(m))2K< ” >2f($z‘)d96i

_ / (g(@ + hu) — g(2))2 K () f(z + hu)du

_opt / (¢ (@)hu + o(h))* K (w)? (f(x) + o(h)) du
— b @R ) [ K () dut ofb),
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SO
VI =E[C] - B[G) = h'(2)*f(2) ¥ + o(h),
where U2 = [w’K (u)2 du. Hence, by some CLT,

T <(nh)1 > (o) ~ o) & (255 ) - B (o) + o<h2>>

=1

4N (0,4 ()2 f(2)U%) .

Let A= lim nh3, assuming A < oco. Then,
n—o00,h—0

/ T 2
Vah 1 (§(z) - g(z)) % N (AB(m), g f( ) w%) .

11.5 Unbiasedness of kernel estimates

Recall that " %
(@) = il i 1)
> iy K (w2 — )

SO

n B [yilei] Kn (¢ — n Ky (2 x
B [ZZE?_[?IIQ](%;—( ) )} =" [%?_1 K:((l“z - fﬁ))] -

ie. g(z) is unbiased for ¢ = g(x). The reason is simple: all points in the sample are equally
relevant in estimation of this trivial conditional mean, so bias is not induced when points far from
x are used in estimation.

The local linear estimator will be unbiased if g () = a + bzx. Then all points in the sample are
equally relevant in estimation since it is a linear regression, albeit locally, is run. Indeed,

. >t (Wi — ) (v — @) Ky (2 — x)

gr(r) =g+ STy o — (r —1),
Bji (@) = BBl o]
MR
= Bla+bs]
i PR ;; (—;_—gg[(; (;infg @iz g;n] (@ — :E)]

= Ela+bz+b(z—7)] =a+ b

As far as the density is concerned, unbiasedness is unlikely. Indeed, recall that

f@)= 13" Knlwi—a),
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SO
1 T —T

B [f ()] =E{Kh<xi—m>1=5/f<( - >f(x)dx-

This expectation heavily depends on the bandwidth and kernel function, and barely will it equal
f (), except under special circumstances (e.g., uniform f (z), z far from boundaries, etc.).

11.6  Shape restriction

The CRS technology has the property that

f(l,k):k:f(é,l).

The regression in terms of the rescaled variables is

Vi _ (L g
k; _f<ki71> +k’z"

Therefore, we can construct the (one dimensional!) kernel estimate of f (I, k) as

In effect, we are using the sample points giving higher weight to those that are close to the ray [ /k.

11.7 Nonparametric hazard rate

(i) A simple nonparametric estimator for F'(t) = Pr{z < t} is the sample frequency

n

F(t):%Z]I[zjgt].

j=1

By the law of large numbers, it is consistent for F'(¢). By the central limit theorem, its rate
of convergence is y/n. This will be helpful later.

(ii) We derived in class that

s (57) ] ot

1 zj—t 1
\Y [h—nk< . ﬂ = h—anf(t) +0(1),
where R, = [k (u)2 du. By the central limit theorem applied to

VA (160~ 10) = Vi =3 (jok (S54) - 1),

and
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we get

(iii) By the analogy principle,

It is consistent for H(t) and

Vs ()~ H@) = W( i )

1-F@) 1-F(t)

({00 - Fe) - fo0 - F)
- h"( - F)( - F(1) )

_ VR (f(8) - f(1) JalE(t)
= + Vha (1) q

~

1- B(t)

LA - _1F(t)/\/(o,ka(t)) +0

= (0. me i)

Fi) — F(1)
—F(O)1- F(1)

The reason of the fact that uncertainty in F (t) does not affect the asymptotic distribution of
H(t) is that F'(t) converges with faster rate than f(¢) does.
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12. CONDITIONAL MOMENT RESTRICTIONS

12.1 Usefulness of skedastic function

Denote 0 = (f ) and e = y — 2/3. The moment function is

0= () = (oo e )

The general theory for the conditional moment restriction E[m(w,0)|x] = 0 gives the optimal

restriction E [D(z)'Q(z) " 'm(w,0)] = 0, where D(z) = 20’ ]1} and Q(z) = Blmm/|z]. The

variance of the optimal estimator is V = (I [D( ) 1D(x )]) . For the problem at hand,

(B
D(@")—E[%\m}_ KQex '+l )'x]__<’f,'; fgr)’

B "ot e? e(e? —h) B e? e3
Q(x) _E[mm ’x] =E [( 6(62 _ h) (62 _ h) ) |x] =E [( 63 (62 _ h)2 > |x:| )
since Elex|z] = 0 and Eleh|z] = 0.
Let A(x) = det Q(z) = Ele?|2]E[(e? — h)?|z] — (E[e3|z])?. The inverse of  is

e =g ()]

and the asymptotic variance of the efficient GMM estimator is

V*le[D(a:) Q(z)"'D(x )] (g B(;’)
where

A = E

A(z)
—e3h ' + ezhﬂh’g
B —
A(z)

(€? — h)%xa’ — 63($h,ﬁ + hga') + ezhgh’ﬂ]

e?hrh
o=

Using the formula for inversion of the partitioned matrices, find that

_ < (A— B'C'B)™! « >

* *

where * denote submatrices which are not of interest. .
TT
To answer the problem we need to compare Vi3 = (A — B'C~1B)~! with Vj = (E [—]) ,

h
the variance of the optimal GMM estimator constructed with the use of m; only. We need to show

that V11 <V, or, alternatively, Vﬁl > bel. Note that

Vit-Vit=A-BCB,
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where A = A — Vbﬁl can be simplified to

' (B 3 2
! (:mc (B [)z]) —63(l‘h/ﬂ+hﬁl‘,)+€2h5h,ﬁ>] .

A=E

A(z) B [e?|z]

Next, we can use the following representation:
A— B'C7'B = E[luwu/],

where
w = E[€3’[L‘:|Z'_E|:62|Z'] h/B +B,C_1hﬂ— .
E [e2|z]\/A(x) A(r)

This representation concludes that Vﬁl > VO_1 and gives the condition under which Vi; = V4. This
condition is w(z) = 0 almost surely. It can be written as

E [¢3|z]
E [e?|x]

x=hg— B'C~'h, almost surely.

Consider the special cases.

1. hg = 0. Then the condition modifies to

E [¢®|z] e3hqa' 2hh ]!

———x =—FE E a hr almost ly.

Bl { Aw) } [ A(a) } e

2. hg = 0 and the distribution of e; conditional on x; is symmetric. The previous condition is
satisfied automatically since [63\1‘] = 0.

12.2  Symmetric regression error

Part 1. The maintained hypothesis is E [e|z] = 0. We can use the null hypothesis Hy : E [e3|z] =0
to test for the conditional symmetry. We could in addition use more conditional moment restrictions
(e.g., involving higher odd powers) to increase the power of the test, but in finite samples that would
probably lead to more distorted test sizes. The alternative hypothesis is H; : E [e3|az] £ 0.

An estimator that is consistent under both Hy and H; is, for example, the OLS estimator
dors- The estimator that is consistent and asymptotically efficient (in the same class where &ors
belongs) under Hy and (hopefully) inconsistent under H; is the instrumental variables (GMM)
estimator &ory that uses the optimal instrument for the system E[e|z] = 0, E [e3|z] = 0. We
derived in class that the optimal unconditional moment restriction is

B |a1(2) (y - az) + a2(2) (y - a2)*| = 0,

<a1(33)> _ x (M6($) - 3#2(17)#4(95))
az(z) fro () () — prg(z)? 3pg(2)? — py()

and p,. () = E[(y — az)" |x], r = 2,4,6. To construct a feasible &osy, one needs to first estimate
i,(z) at the points x; of the sample. This may be done nonparametrically using nearest neighbor,

where
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series expansion or other approaches. Denote the resulting estimates by f,.(z;), i = 1,--- ,n,
r =2,4,6 and compute a;(x;) and aa(z;), i = 1,- -+ ,n. Then Gory is a solution of the equation

1

n Z (&1(:Ez‘) (yi — dorva;) + aa(x;) (yi — dojv$i)3) —0,
i=1

which can be turned into an optimization problem, if convenient.
The Hausman test statistic is then

N ~ 2
oo n(aOLS a&orv) 4.2 1),

Vors — Vorv
where Vorg = n (Z?:l :z:f) -2 S a2 (yi— &OLSxi)2 and Voyy is a consistent estimate of the
efficiency bound

(o (2 g (@i) — B () g (0) + 93 (i) T\
VOW‘<E[ o (22 1o(1)) — 12(27) D |

Note that the constructed Hausman test will not work if &org is also asymptotically efficient,
which may happen if the third-moment restriction is redundant and the error is conditionally
homoskedastic so that the optimal instrument reduces to the one implied by OLS. Also, the test
may be inconsistent (i.e., asymptotically have power less than 1) if oy happens to be consistent
under conditional non-symmetry too.

Part 2. Under the assumption that e|lz ~ N(0, 02), irrespective of whether o is known or not,
the QML estimator &gpsr coincides with the OLS estimator and thus has the same asymptotic
distribution

E {xQ (y — Oé$)2}

n (& —a) 4N 0,
VG = (BL2)?

12.3  Optimal instrument in AR-ARCH model

Let us for convenience view a typical element of Z; as > 7 wier—;, and let the optimal instrument
be ¢, = Zfil a;er—i. The optimality condition is

E[vizi—1] =E [Ut{tsf] for all v; € Z;.

Since it should hold for any v; € Z;, let us make it hold for vy = ;_;, j = 1,2,--- . Then we get a
system of equations of the type

o)
E[et,j:rt,l] =E |:5t7j (Zizl aiet,i) E%} .

The left-hand side is just p?~! because x;—1 = Y oo, p' 'er—; and because E[e?] = 1. In the right-

hand side, all terms are zeros due to conditional symmetry of &;, except a;E [sfﬁ je,ﬂ . Therefore,

pi=1

“= 1+ai(k—1)
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where k = E [¢}] . This follows from the ARCH (1) structure:
E [E%,jgf] =E [E%,jE[sth_l]] =E [E%,j (1-a)+aef )] =1—a)+aE [5?,]-“53] ,
so that we can recursively obtain
E [5%_]-5?} =1—ad + k.
Thus the optimal instrument is

o pi—l
G = §:1+a%n—na4::
=1

_ L1 - (ap)! ,
= T¥a(r -1 +(k=1)(1 —a); [T o) LT am e D)

To construct a feasible estimator, set p to be the OLS estimator of p, & to be the OLS estimator
of a in the model &2 — 1 = a(&?_; — 1) 4 v, and compute & = T~" Zsz &}

The optimal instrument based on Elei|I;—1] = 0 uses a large set of allowable instruments,
relative to which our Z; is extremely thin. Therefore, we can expect big losses in efficiency in
comparison with what we could get. In fact, calculations for empirically relevant sets of parameter
values reveal that this intuition is correct. Weighting by the skedastic function is much more pow-
erful than trying to capture heteroskedasticity by using an infinite history of the basic instrument
in a linear fashion.

12.4 Optimal IV estimation of a constant

From the DGP it follows that the moment function is conditionally (on y;—p—1,%t—p—2,---) ho-
moskedastic. Therefore, the optimal instrument is Hansen’s (1985)

@(L)Ct =E [@(Lil)iluyt*pfbyt7p727 o j| ’

or

O(L)¢, = O(1)~"

This is a deterministic recursion. Since the instrument we are looking for should be stationary, ¢,
has to be a constant. Since the value of the constant does not matter, the optimal instrument may
be taken as unity.

12.5 Modified Poisson regression and PML estimators

Part 1. The mean regression function is E[y|z| = E[E[y|z, ¢]|x] = Elexp(2/S + €)|x] = exp(a’[).
The skedastic function is V[y|x] = E[(y — E[y|z])?|z] = E[y?|x] — Ely|z]?. Since

E [y2|a:] = E [E [y2|m, 5] ]x] =E [exp(2x'ﬁ + 2¢) + exp(a’f + €)|m]
= exp(22/B)E [(expe)?|z] + exp(2’B) = (02 + 1) exp(22'B) + exp(2'B),

we have V [y|x] = 0% exp(22'3) + exp(2/3).
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Part 2. Use the formula for asymptotic variance of NLLS estimator:
VNLLS Qgg Qgg62 Qgg )

where Qgq = E [9g(x, 8)/03 - 9g(x, 8)/03'] and Q g2 = E [0g(x, 8)/08 - dg(x, 8)/05 (y — g(, 8))?] .
In our problem g(z, 5) = exp(z’3) and Qgy = E [za’ exp(22/5)],

Qggez = B [za’ exp(24/8)(y — exp(a'B))?] = B [z’ exp(22/ ) V[y|z]]
= E [22' exp(22/3)(0? exp(22/3) + exp(2'B))] = E [22' exp(32/3)] + 0’E |22’ exp(42’5)] .
To find the expectations we use the formula E[za’ exp(nz’()] = exp(";ﬁ'ﬁ)(l +n2Bp3'). Now, we

have Qg9 = exp(26'6)(I + 488') and Qg2 = exp(%ﬁ’ﬁ)([ +9883") + o2 exp(83'B)(I + 1633).
Finally,

1
Viviss = (1 +405) " (exp(GHA)(1 +955) + 0% exp(ad B)(1 +1635) ) (1 +435)
The formula for asymptotic variance of WNLLS estimator is
_ -1
VwNLLs = Q)2

where Qyg/02 = E [Vly|lz]0g(z,3)/08 - 8g(x, 8)/03'] . In this problem

Qqg/o> = E [:m:’ exp(22'3) (02 exp(22'6) + exp(x’ﬁ))*l] ,

which can be rearranged as

% —o2(I-E v’ -

Part 3. We use the formula for asymptotic variance of PML estimator:
Vemr =J 12T 71,

where

L ac om(z, By) Im(z, By)
L om m(x,8q) 8ﬁ 816, ’

2
_ 8_0 2 om(x, /30) 8m($,ﬁo)
S (am m(%ﬁo)) 7T op' ]

In this problem m(z, 3) = exp(2’3) and o2(z,8) = o exp(?a:'ﬁ) + exp(2/f).

(a) For the normal distribution C(m) = m, therefore 2 8 =1and Vpymr = VNLLS-
(b) For the Poisson distribution C(m) = logm, therefore $< = 1

T = Ele(~a'f)er exp(24'8)] = exp(z 8 )T + )
T = Elexp(—22'8)(0? exp(22'8) + exp(z'B))zz’ exp(22'B)]
= oxp(5A BT + 58 + o exp(28B)(T +155).
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Finally,
Vepmr = (14687 <6Xp(—%ﬁlﬁ)(1 + B8") + o exp(8'8)(I + 455')) (I+p8)""

(c) For the Gamma distribution C'(m) = —=, therefore % = %,
J = Elaexp(—22'3)rz’ exp(22'6)] = al,
T = o’BElexp(—42'0)(0? exp(22'3) + exp(2'B))za’ exp(22' )]
= a%?l +a exp(%ﬁ/ﬂ)(f +85").
Finally,
Vapur = o1 + eXp(%ﬁ'ﬂ)(I +38').

Part 4. We have the following variances:

VNLLs = (I+—4ﬁﬁv1(exp(%ﬂ%ﬁ(14—9ﬁﬂﬂ-+02exp@ﬂyﬁxl—+16ﬁﬂﬂ>(I—+4ﬁﬂﬂ%

—1
Tr

Vi = ¢2(I-E

Vpmvr = VnLLs,

Verss, = (1+00) (xp(-g@0)0 +00) + o expld (1 +499) ) 1+ 53) ",

Veopmr = oI+ exp(%ﬁ/ﬂ)(f + 36).

From the theory we know that Viynrrs < Vnrrs. Next, we know that in the class of PML

1
estimators the efficiency bound is achieved when — is proportional to —————, then the

8771 Tn(x,ﬁo) 0-2(‘T760)
. [5m(x,ﬁ) om(z,8) 1 }
o5 o7 iyl
which is equal to Viy nyrrg in our case. So, we have Viynrrs < Vppyrr and Viynrrs < Vopumr. The

comparison of other variances is not straightforward. Consider the one-dimensional case. Then we
have

bound is

e /2(1 4+ 98%) + 0248 (1 + 163°)

V — )

NLLS TERTaE
2 z? -
1% = 1-B——

VNemr = VNLLS,

v P48 + o2 (14 4)
PPML — (1 +B2)2 )

Vopmr = o+ /(14 6%,

We can calculate these (except Viynrrs) for various parameter sets. For example, for o2 =0.01
and ﬁ2 =04 VNLLS < Vppmr < VGPML; for (72 = 0.01 and ﬁ2 = 0.1 Vppyr < VNLLS <
Vaepmir, for 0?2 = 1 and ﬁQ = 04 Vopmr < Vepur < VNLLS, for o2 = 0.5 and ﬂQ = 04
Vepmr < Vapmir < Vnrrs. However, it appears impossible to make Vyrrs < Vapmr < VepumL
or Vapmr < Vnrrs < VepumeL.
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12.6  Misspecification in variance

The log pseudodensity on which the proposed PML1 estimator relies has the form

(y —m)*

1
log (y,m) = —log V21 — 3 logm? + TUR

which does not belong to the linear exponential family of densities (the term y?/2m? does not fit).
Therefore, the PML1 estimator is not consistent except by improbable chance.

The inconsistency can be shown directly. Consider a special case of no regressors and estimation
of mean:

Yy NN(00702) )

while the pseudodensity is
y~N(6,6%).

Then the pseudotrue value of 0 is

2 2 2
&:argmngE[ 1g02 (y—0) ] :argméax{—%logQQ—i—U + (6o — 0) }

202 202

It is easy to see by differentiating that 0, is not 6y until by chance 90 = o2

12.7 Optimal instrument and regression on constant

Part 1. We have the following moment function: m(z,y,0) = (y — a, (y — a)? — o%z?)’ with
0 = (%). The optimal unconditional moment restriction is E[A*(z;)m(z, y,0)] = 0, where A*(z;) =
D'(xs):xs) ™, D(@:) =B [0m(w,y,0)/00 ;] , Q@) = Blm(z,y, 0)m(z, y,0)'|z].

(a) For the first moment restriction mq(z,y,0) = y — a we have D(z;) = —1 and Q(x;) =
E [(y — @)?|zi] = 0222, therefore the optimal moment restriction is
Yi —«
E =0.
7

(b) For the moment function m(x,y, ) we have

-1 0 o?x? 0
D(xi) = < 0 —a? )’ Qx;) = < 0 y(x) — atot )’

where p4(z) = E [(y — a)*|z] . The optimal weighting matrix is

1
0
. o2x?
O 1
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The optimal moment restriction is

Yi —
2
ln
E ¢ =0.
(g =) = o2
palws) —ajot

Part 2. (a) The GMM estimator is the solution of
Iy~ . Yi 1
The estimator for 02 can be drawn from the sample analog of the condition E [(y — a)z] =o’E [mQ] :

5t = Z(y,—&f/z:xf

(b) The GMM estimator is the solution of

We have the same estimator for a:

&2 is the solution of

A2 522
S oy,
i M4(ZL‘Z) -
where fiy(z;) is non-parametric estimator for py(z;) = E [(y — @)*|z;], for example, a nearest

neighbor or a series estimator.

Part 3. The general formula for the variance of the optimal estimator is

V = (B [D'(x:)(z:) ' D(@:)]) .

(a) Vi = o? (E [:L“72] )71 . Use standard asymptotic techniques to find

Bli—o)] 4

&2:—2_0-
(B [])
(b)
1 ! 2 —27\~1
o202 0 o? (B [z;7]) 0
7 _ 4 -1
PV e ) U )

O a) et pa(ai) — ot
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When we use the optimal instrument, our estimator is more efficient, therefore V;2 > V2.
Estimators of asymptotic variance can be found through sample analogs:

—1 a4 4 ~1
Va = 62 1 Z iQ , V2= 71721@Z O;) —&t Ve=n Z — i T .
nee (Zi 357,2) i fig (i) — 236

Part 4. The normal distribution PML2 estimator is the solution of the following problem:

—_—

! n 1 (yi — a)?
= t-Dlogo? — 5 S LA
<02>P . arg max {cons 5 logo” — — i 227

a,o

Solving gives

~

2
4 4 Zyz Zl 52 12(%—0!)
PMI2 =G = )Y = 1 — =)y
2 Loz TPuna= ) 2
1 1 1

. . . _o1y—1
Since we have the same estimator for «, we have the same variance Vj = o2 (E [33 2]) . It can be

7
shown that
Ve =E [M} — ot

1
€,
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13. EMPIRICAL LIKELIHOOD

13.1 Common mean

1. We have the following moment function: m(z,y,0) = (x — 6,y — 0)'. The MEL estimator is
the solution of the following optimization problem.

Zlogpz — max
i Di,0

Zpim(l“i,yiﬂ) =0, Zpi =1.

Let X be a Lagrange multiplier for the restriction ), pym(x;, v;,0) = 0, then the solution of
the problem satisfies

subject to

1 1

b = El—l—)\’m(mz,yz,@)’

0 = — i i797
Zl—i—)\m(wz,y,,) <x“y )

1 om(zi,yi,0)\’
0 = =— E A
n < 14+ XNm(zy,y:,0) ( 00’ )

In our case, A = (A1, A2), and the system is

1
b = 1+M(~—@+Aﬂ%—9y
1 i — 0
0 = =
Zl—i—)q( i — 0) + Ao (v —9)( 9)
B —A1— Ao
0 = Zl—i—)q i —0) + Xa(yi — 0)

The asymptotic distribution of the estimators is

\/ﬁ(éel - 9) i) N(Ov V)? ﬁ(i;) i> N(()? U)7

where V = (QémQ;l}nQam)fl U= Q,;}n—Q;l}nQamVQ’am 1 . Inour case Qgm = < :1 )
2
and Qpm = ( Oz Ugy ) , therefore
Owy Oy

o030, — 03, U 1 1 -1
02+ 02— 204y 02402 =204 \ -1 1 '

Estimators for V and U based on consistent estimators for o2, 05 and o, can be constructed
from sample moments.
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2. The last equation of the system gives Ay = —Ay = A, so we have

156

1 1 1 x; — 0
T @i — ) Oﬁzl‘i‘/\(%_yi)(yi_H)'

%

The MEL estimator is

~ Wiz Yi
0 = = )
MEL Z 1+ Aver(z — yi) ; 1+ Aven(xi — i)

i
where A\jgr is the solution of
Z Ty — Yi -0
— 1+ Az — ui) '
Consider the linearized MEL estimator. Linearization with respect to A around 0 gives
1 T; — 0
pi =1—=Xai — i), 0—52<1—/\(93i—yi))< >,

yi — 0

i
and helps to find an approximate but explicit solution

Sy = Zi@imw) g S = Ma —y))e (0~ A — i)y,
Lilwi i) Sl Awi—w) X Aw )

Observe that A is a normalized distance between the sample means of x’s and y’s, O is
a weighted sample mean. The weights are such that the weighted mean of x’s equals the
weighted mean of y’s. So, the moment restriction is satisfied in the sample. Moreover, the
weight of observation ¢ depends on the distance between x; and y; and on how the signs of
x; —y; and T — g relate to each other. If they have the same sign, then such observation
says against the hypothesis that the means are equal, thus the weight corresponding to this
observation is relatively small. If they have the opposite signs, such observation supports
the hypothesis that means are equal, thus the weight corresponding to this observation is

relatively large.

. The technique is the same as in the MEL problem. The Lagrangian is

L=- Zpi logp; +p (sz — 1) + )\/Zpim(ﬂ%yme)-

The first-order conditions are

1 ) ! oo _ I 8m($zay179)
~(logp; + 1) + pr+ Xm(ws, 0, 0) =0, XY pi——5

=0.

The first equation together with the condition ), p; = 1 gives
e)\’m(xivy’iae)

Pi= ZZ eA/m(xiayiae) '

Also, we have
am(x’i? Yi, 0) '
¢ i
The system for 6 and A\ that gives the ET estimator is
, ! 0 (3 i70 !
0= Z e m(m,yi,e)m(mi, vi,0), 0= Z N m(i,yi,0) (%) N

7
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In our simple case, this system is

0= Z e (@i—0)+X2(yi—0) (y z> 0= Z 6)\1(‘%1‘*‘9)+)\2(yi*0)()\1 + A2).
v i

Here we have A\; = —A3 = X\ again. The ET estimator is

b — ZZ :L'ie)‘(wi_yi) _ Zz yie)‘(wi_yi)
T M) T Ay

where ) is the solution of

Z<x’ _ yi)e/\(mi*yi) =0.
7
Note, that linearization of this system gives the same result as in MEL case.
Since ET estimators are asymptotically equivalent to MEL estimators (the proof of this fact
is trivial: the first-order Taylor expansion of the ET system gives the same result as that of
the MEL system), there is no need to calculate the asymptotic variances, they are the same
as in part 1.

13.2 Kullback=Leibler Information Criterion

1. Minimization of . . .
KLIC(e:m) =E, [log ;} = zz: - 1Ogn_7r7;
is equivalent to maximization of ), logm; which gives the MEL estimator.
2. Minimization of
KLIC(m:e) = [log } Zmlog n

gives the ET estimator.

3. The knowledge of probabilities p; gives the following modification of MEL problem:
;pi logi—i — 172172 s.t. Zwi =1, me(zi,@) =0.

The solution of this problem satisfies the following system:

Pi
1+ )\'m(xi, Ui, 9) ’

_ Pi s
0 - ;1+)\/m($i,yi,9)m(x“y“9)’

_ Pi om(x;,yi,0) /
"o glﬂ’m(xi,yi,e)( 0’ .

The knowledge of probabilities p; gives the following modification of ET problem

e .
Xi:m logp—: — I;lzlgl s.t. Zm =1, me(zi,ﬁ) =0.

U
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The solution of this problem satisfies the following system
pieA/m(xiayiae)
X pie e
0 = Zpiexm(xi7yiﬂ)m(xia Yi, 9),
i

mie0) (O v 0)'

4. The problem
1/n

— min
[

KLIC(e: f) = Ee [log ?] =3 % log

is equivalent to

Zlogf 2, 0) — max,

which gives the Maximum Likelihood estimator.

13.3 Empirical likelihood as |V estimation

The efficient GMM estimator is
-1
Barm = (ZoumX) ™ ZeuuY,s
where Zgpra contains implied GMM instruments
.o\ -1
Zevin = X'7Z (Z’QZ) 7z

and € contains squared residuals on the main diagonal.
The FOC to the EL problem are

zi (Yi — ¥iBEL) !
0 = : =) iz (¥ — %PrL)
; 1+ Npp2i (% — 26pL) ; ( i)

1 /
0 = —22)) NEL = — Y TiTiZABL-
22-: 1+ Ngpzi (yi — 2iBpL) ( Z ) e Z S

From the first equation after premultiplication by >, m;z;z; (Z’ QZ> it follows that

BeL = (Z}ELX)_l ZpLY,

where Zg, contains nonfeasible (because they depend of yet unknown parameters S5 and Agr)
EL instruments

ZpL = X'Z (Z’QZ) L

where II = diag (71, -+ , 7).

If we compare the expressions for S5y, and By, we see that in the construction of 35 some
expectations are estimated using EL probability weights rather than the empirical distribution.
Using probability weights yields more efficient estimates, hence Bg; is expected to exhibit better
finite sample properties than Bgpray-
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14. ADVANCED ASYMPTOTIC THEORY

14.1 Maximum likelihood and asymptotic bias

(a) The ML estimator is A= ?ji;l for which the second order expansion is

. 1
Blyl (1+ @) 4 X0, e —E))

= A (1 —A%Li(yt—Al) +>\2% (%i(@/t —A1)>2+op <%)) :

N

t=1 t=1

Therefore, the second order bias of \ is

B, <)\> - %)\SV y] = %/\.

(b) We can use the general formula for the the second order bias of extremum estimators. For
the ML, ¥(y, A) =log f(y,A) = log A — Ay, so

2 2 3 2
RSB S R e

IN?
so the second order bias of \ is

Bz (1) = % <(>\‘2)2 0+ % (A2 7203 A‘Q) = 7

E =2, E[

The bias corrected ML estimator of \ is

T7—-1
T

1
T

N=A-Z\=

s |-

14.2 Empirical likelihood and asymptotic bias

Solving the standard EL problem, we end up with the system in a most convenient form

~ 1 “ Xy

0pr = — ) ——0,
n;1+)‘(xi_yi)

n

1 Ti — Yi
O = - /\—7
";1+>\($¢—yi)
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where )\ is one of original Largrange multiplies (the other equals —5\) From the first equation, the
second order expansion for fgy, is

bpr = —sz - M=)+ Ko )+ 0p (3)
I
= 0+ %% ;((L’Z —0)— E\/ﬁ)\% Z;JUZ(JUZ
—|—%(\/ﬁj\)2E [l’z(.’L’l — y@)Q] + Op <%> .

We need a first order expansion for 5\, which from the second equation is

\/_5\ 1 Zz 1( yi)

s —u? Y T B fz St
Then, continuing,
0 — _zn: 1 3 (zi — u;) LG:x.(x._ )
EL \/— - E[(xz—yz)2] ni:l % Yi \/ﬁi:l AR Yi

to
( ln Xn: (i — yz')) 2E iz = 4i)?] + 0p <%> ,

The second order bias of gr, then is

~ 1 1 1 )
. (GEL) - EE _E[(xz_yz)z]\/ﬁi_zl(xi yZ)\/_Z_le’(’Iz yz)
n 2
1 1
+<E[(xl yl)z]ﬁ;(xi yﬁ) E [zi(2; — i) ]}
LY — 2
- n< Bl — ) )]

14.3  Asymptotically irrelevant instruments

1. The formula for the 2SLS estimator is

(Cziz) (C2iz) " (T zien)
(Cizf) (L zi2) ™ (iz)

According to the LLN, £ > 22/ 2. Q.. = E[z7]. According to the CLT,
% 3 0 0% poo,
72 () * () =) (o 7 ) 29),
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where 02 = E [332] and 02 = E [62] (it is additionally assumed that both z and e are ho-
moskedastic conditional on z, that they are homocorrelated conditional on z, and that there

is convergence in probability). Hence, we have

t <\/1T szzé) (% ZZizé)il <\/1T Ziei) p f/Q;zl
=3+ > ; .
=Y i) (+227) (o= 2wz Q-
e ) ) (rmen) €@

2. Under weak instruments,

(Qzzc+ wzv)/ Q;z1¢zu
(Qzzc+1,,) Q22 (Quzc+ 1)

Bosts 2 B+

where c¢ is a constant in the weak instrument assumption. If ¢ = 0, this formula coincides

with the previous one, with 9,, = ¢ and ¢, = (.

3. The expected value of the probability limit of the 2SLS estimator is

N ')—1 1 —1
slpimbuns] = 048 [ =0+ ozs [
= [+ Pzgw = plimBOLS,

T

where we use joint normality to deduce that E [(|{] = po/o,.

14.4 Weakly endogenous regressors

The OLS estimator satisfies

I 5= r) e )

n

and

Vi (B 0) = et (X)X e Q7 ~ N (02071

The Wald test statistic satisfies
n (R/S’ _ 7“)/ (R (X'x) R’)fl (R/S’ _ r>
(v-2xB) (v~ x5)

» (c+ Q') R (RQ'R) "R(c+Q7') 206),

W:

oy
where
R (RQ'R) ' Re

2
04

6

is the noncentrality parameter.
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14.5 Weakly invalid instruments

1. Consider the projection of e on z:

/
e=zZw-+,

where v is orthogonal to z. Thus

n V22 E =022 (Zw+ V) = (012 Z) e + 0722V

We have

(n_:lZ/Z, n_lZ'X, n_l/ZZ/V> 2, (szv szmg) )

where Q,, =E[22/], Q. =E[z2/] and £ ~ N (0, U2QZZ) . The 2SLS estimator satisfies

v

nIX'Z (n 12 Z) a2 2 E
n1X'Z (n=12'Z)  n-12'X
! -1 / 2
p Qe t@ul) o Qwew __oi )

vi(B-8) =

Since ( is consistent,

W0 = (Y - XBY (Y XB) 2 (B B)n X (v~ xB)+ (B 5) n X

" (Zw+ VY (Zw+ V) =2 (B - ﬂ) (0 X' Zw+n" X'V + (B - 5)2 nlX'X

SN

p
= 0o

Thus the ¢ ratio satisfies

where

,,z:r (Cw + Qz_zl )
t,@ = ﬂ - ﬂ — ﬁ) /z:rQ;lezx — N N((St, 1) :
\/&3 (X’Z(Z’Z)*l Z’X) \/ 02 (Q1Q7 Qzz)

/
Cw
8§ = 2z

/ 1
Oy /szzz sz

is the noncentrality parameter. Finally note that

S0,

162

n V270 = 0 YV2Z7'E—\/n (B — ,3) n1z'x

! -1
g e+ 326 - el 0200

! szz Qz:rQl
~ N( zzw_Lai(zz_—zw>>>
R TIG s WRA o S o

n—l/QUlZ Tl_1Z/Z —ln—l/Qle d
J = ( 52 ) HX?fl (6J)7

ADVANCED ASYMPTOTIC THEORY



where

5J = <szcw - ;xCWsz )l Qz_zl (szcw - Q;zchz_x )

—1 —1
/ZJ: zz QZ:B 0121 /z:c F4 Qz:r
1 /
= _2011 <sz - ,sz?lzw > Cw
O-’U zmQZZ sz

is the noncentrality parameter. In particular, when ¢ =1,
-1
\/T_l(ﬂ—ﬁ) ﬂ) Cw ‘i_lezg ~ N<QZZCM,Q;ZO'%> :
2z sz sz 2x

2
co+ Q71 c2
t% L MQW ~ X% <sz_u2)> )
v

Ok

Q

n2z70%0 = Jbo
2. Consider also the projection of x on z:
x=271+w,
where w is orthogonal to z. Thus

22X =02 (Zn + W) = (012 Z) en + 07 2Z'W

We have
(n7 22 P2 W 22V ) L (Qunn ),
¢ o2 oww . .
where ¢ ~N (0, o 2 ® Q2 | - The 2SLS estimator satisfies
. nV2X'Z (n 12/ Z) a2 Z'E
e n-12X'7Z (n=12'2) " n-1/22'X

(szcw + C)/ Q;zl (szcw + 5) Iy ()\w + Zw)/ <)\w + Z’u) Oy V2

p — —
= = = ___=

(szcw + C), Qz_zl (szcw + C) Cow (/\7r + ZUI)I <)‘7T + Zw) ow Z

where (Zw> ~N <0, [ ; ? ] ® Ig) and p = Twv_ Note that B is inconsistent. Thus,

2y OwOvy

62 = 00 =n"t(Y - XB) (Y — XB) — 2 (B - 5) nIXT (Y - XB) + ([3 - ﬁ>2 nlX'X

= n (Zw+ VY (Zw+ V) -2 (B - 5) L (Zr + WY (Zw+ V) + (B - ﬁ>2 n~lX'X

2 2
Oy V Oy UV v v
£>012,—2<—v—2>0wv+<—v—2> o2 =02 (1—2p—2+(—2> )
Ow V1 Ow V1 31 31
Thus the ¢ ratio satisfies

B -0 N V2/\/E '
\/&z (X’Z (2'2)"! Z’X)_l V1= 2p0a/v1 + (vaf11)?

tg =
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Finally note that

w220 = V2B - (B 8)n 22X
& QiéQJ’U (>\w + Zv) - &2 iéggw ()\ﬂ— + Zw)
Ow V1

1%
= UinQ (()‘w + 2y) — V_j (Ar + Zw)) =1,
S0,
n—l/QUlz(n—lZ/z)—ln—l/Qle

~2
Oe

((/\w +2,) — Z—i (e + zw)>, ((/\w +z) — ? (e + zw)>

1

p
=

where v3 = (A, + 2,) (Ao + 2,) . In particular, when ¢ = 1,

p Oy Aw + 2o
—
Ow M + 2w

Aw + 2 Do + 20\ 2

~2 P 2 w v w v

1-2

O'e—>0'v< P)\ﬂ+zw+<)\ﬂ+2w>>7
Ao + 2y

VA + 2w

1-9 )\w+zv+ Ao+ 2y 2
pATr+zw A+ 2w
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