|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Эконометрика Учебник. М.: Издательство "Экзамен", 2002. Глава 8. Статистика нечисловых данных 8.4. Законы больших чисел и состоятельность статистических оценок в пространствах произвольной природы Законы больших чисел состоят в том, что эмпирические средние сходятся к теоретическим. В классическом варианте: выборочное среднее арифметическое при определенных условиях сходится по вероятности при росте числа слагаемых к математическому ожиданию. На основе законов больших чисел обычно доказывают состоятельность различных статистических оценок. В целом эта тематика занимает заметное место в теории вероятностей и математической статистике. Однако математический аппарат при этом основан на свойствах сумм случайных величин (векторов, элементов линейных пространств). Следовательно, он не пригоден для изучения вероятностных и статистических проблем, связанных со случайными объектами нечисловой природы. Это такие объекты, как бинарные отношения, нечеткие множества, вообще элементы пространств без векторной структуры. Объекты нечисловой природы все чаще встречаются в прикладных исследованиях. Много конкретных примеров приведено выше в настоящей главе. Поэтому представляется полезным получение законов больших чисел в пространствах нечисловой природы. Необходимо решить следующие задачи. А) Определить понятие эмпирического среднего. Б) Определить понятие теоретического среднего. В) Ввести понятие сходимости эмпирических средних к теоретическому. Г) Доказать при тех или иных комплексах условий сходимость эмпирических средних к теоретическому. Д) Обобщив это доказательство, получить метод обоснования состоятельности различных статистических оценок. Е) Дать применения полученных результатов при решении конкретных задач. Ввиду принципиальной важности рассматриваемых результатов приводим доказательство закона больших чисел, а также результаты компьютерного анализа множества эмпирических средних. Определения средних величин. Пусть X - пространство произвольной природы, x1, x2, x3,...,xn - его элементы. Чтобы ввести эмпирическое среднее для x1, x2, x3,...,xn будем использовать действительнозначную (т.е. с числовыми значениями) функцию f(x,y) двух переменных со значениями в X. В стандартных математических обозначениях, Определение 1. Средней величиной для совокупности x1, x2, x3,...,xn (относительно меры различия f), обозначаемой любым из трех способов: хср = En(f) = En(x1, x2, x3,...,xn ; f) , называем решение оптимизационной задачи Это определение согласуется с классическим: если Х = R1, f(x,y) = (x - y)2, то хср - выборочное среднее арифметическое. Если же Х = R1, f(x,y) = |x - y|, то при n = 2k+1 имеем хср = x(k+1), при n= 2k эмпирическое среднее является отрезком [x(k), x(k+1)]. Здесь через x(i) обозначен i-ый член вариационного ряда, построенного поx1, x2, x3,...,xn, т.е. i-я порядковая статистика. Таким образом, при Х = R1, f(x,y) = |x - y| решение задачи (1) дает естественное определение выборочной медианы, правда, несколько отличающееся от предлагаемого в курсах "Общей теории статистики", в котором при n= 2k медианой называют полусумму двух центральных членов вариационного ряда(x(k) + x(k+1))/2. Иногда x(k) называют левой медианой , а х(k+1) - правой медианой [3]. Решением задачи (1) является множество En(f), которое может быть пустым, состоять из одного или многих элементов. Выше приведен пример, когда решением является отрезок. Если Х = R1 \ {х0} , f(x,y) = (x - y)2 , а среднее арифметическое выборки равно х0, то En(f) пусто. При моделировании реальных ситуаций часто можно принять, что Х состоит из конечного числа элементов, а тогдаEn(f) непусто - минимум на конечном множестве всегда достигается. Понятия случайного элемента Определение 2. Теоретическим средним (математическим ожиданием) для случайного элемента Это определение также согласуется с классическим. Если Х = R1, f(x,y) = (x - y)2, то E(x,f) = E(x) - обычное математическое ожидание, при этом E Теоретическое среднее E(x,f) можно определить лишь тогда, когда Существование средних величин. Под существованием средних величин будем понимать непустоту множеств решений соответствующих оптимизационных задач. Если Х состоит из конечного числа элементов, то минимум в задачах (1) и (2) берется по конечному множеству, а потому, как уже отмечалось, эмпирические и теоретические средние существуют. Ввиду важности обсуждаемой темы приведем доказательства. Для строгого математического изложения нам понадобятся термины из раздела математики под названием "общая топология". Топологические термины и результаты будем использовать в соответствии с классической монографией [29]. Так, топологическое пространство называется бикомпактным в том и только в том случае, когда из каждого его открытого покрытия можно выбрать конечное подпокрытие [29, с.183].. Теорема 1. Пусть Х - бикомпактное пространство, функция f непрерывна на Х2 (в топологии произведения). Тогда эмпирическое и теоретическое средние существуют. Доказательство. Функция f(xi,y) от y непрерывна, сумма непрерывных функций непрерывна, непрерывная функция на бикомпакте достигает своего минимума, откуда и следует заключение теоремы относительно эмпирического среднего. Перейдем к теоретическому среднему. По теореме Тихонова [29, с.194] из бикомпактности Х вытекает бикомпактностьХ2. Для каждой точки (x, y) из Х2 рассмотрим Поскольку f непрерывна, то множества U(x,y) открыты в рассматриваемой топологии в Х2. По теореме Уоллеса [29, с.193] существуют открытые (в Х) множества V(x) и W(y), содержащие x и y соответственно и такие, что их декартово произведение V(x) x W(y) целиком содержится внутри U(x, y). Рассмотрим покрытие Х2 открытыми множествами V(x) x W(y). Из бикомпактности Х2 вытекает существование конечного подпокрытия {V(xi) x W(yi), i = 1,2,...,m}. Для каждого х из Х рассмотрим все декартовы произведения V(xi) x W(yi), куда входит точка (x, y) при каком-либо y. Таких декартовых произведений и их первых множителей V(xi)конечное число. Возьмем пересечение таких первых множителей V(xi) и обозначим его Z(x). Это пересечение открыто, как пересечение конечного числа открытых множеств, и содержит точку х. Из покрытия бикомпактного пространства Xоткрытыми множествами Z(x) выберем открытое подпокрытие Z1, Z2, ..., Zk. Покажем, что если
Пусть Zj = Z(x0) при некотором x0. Пусть V(xi) x W(yi), откуда и следует неравенство (3). Поскольку Х2 - бикомпактное пространство, то функция f ограничена на Х2 , а потому существует математическое ожидание E f(,y) для любого случайного элемента , удовлетворяющего приведенным в предыдущем разделе условиям согласования топологии, связанной с f, и измеримости, связанной с . Если х1 и х2 принадлежат одному открытому множеству Zj , то а потому функция g(y) = E f(,y) (4) непрерывна на Х. Поскольку непрерывная функция на бикомпактном множестве достигает своего минимума, т.е. существуют такие точки z, на которых g(z) = inf{g(y), yX}, то теорема 1 доказана. В ряде интересных для приложений ситуаций Х не является бикомпактным пространством. Например, если Х = R1. В этих случаях приходится наложить на показатель различия f некоторые ограничения, например, так, как это сделано в теореме 2. Теорема 2. Пусть Х - топологическое пространство, непрерывная (в топологии произведения) функция f: X2R1 неотрицательна, симметрична (т.е. f(x,y) = f (y,x) для любых x и y из X), существует число D>0 такое, что при всехx,y,z из X f(x,y) < D{f(x,z) + f(z,y)}. (5) Пусть в Х существует точка x0 такая, что при любом положительном R множество{x: f(x, x0) <R} является бикомпактным. Пусть для случайного элемента , согласованного с топологией в рассмотренном выше смысле, существует g(x0) = Ef(, x0 ). Тогда существуют (т.е. непусты) математическое ожидание E(x,f) и эмпирические средние En(f). Замечание. Условие (5) - некоторое обобщение неравенства треугольника. Например, если g - метрика в X, а f = gp при некотором натуральном p, то для f выполнено соотношение (5) с D = 2p. Доказательство. Рассмотрим функцию g(y), определенную формулой (4). Имеем f(,y) < D {f(, x0) + f(x0,,y)}. (6) Поскольку по условию теоремы g(x0) существует, а потому конечно, то из оценки (6) следует существование и конечность g(y) при всех y из Х. Докажем непрерывность этой функции. Рассмотрим шар (в смысле меры различия f ) радиуса R с центром в x0: K(R) = {x : f(x, x0) < R}, R > 0. В соответствии с условием теоремы K(R) как подпространство топологического пространства Х является бикомпактным. Рассмотрим произвольную точку х из Х. Справедливо разложение где
Рассмотрим второе слагаемое в (7). В силу (5)
Возьмем математическое ожидание от обеих частей (8):
В правой части (9) оба слагаемых стремятся к 0 при безграничном возрастании R: первое - в силу того, что второе - в силу того, что распределение случайного элемента сосредоточено на Х и Пусть U(x) - такая окрестность х (т.е. открытое множество, содержащее х), для которой sup {f(y, x), y Имеем
В силу (9) и (10) при безграничном возрастании R
равномерно по y
Нас интересует поведение выражения в правой части формулы (12) при y при y
при y что и доказывает непрерывность функции g(x). Докажем существование математического ожидания E(x,f). Пусть R(0) таково, что
Пусть H - некоторая константа, значение которой будет выбрано позже. Рассмотрим точку х из множества K(HR(0))С - дополнения K(HR(0)), т.е. из внешности шара радиуса HR(0) с центром в х0. Пусть откуда
Выбирая H достаточно большим, получим с учетом условия (14), что при x
Можно выбрать H так, чтобы правая часть (16) превосходила Сказанное означает, что Argmin g(x) достаточно искать внутри бикомпактного множества K(HR(0)). Из непрерывности функции g вытекает, что ее минимум достигается на указанном бикомпактном множестве, а потому - и на всем Х. Существование (непустота) теоретического среднего E(x,f) доказана. Докажем существование эмпирического среднего En(f). Есть искушение проводить его дословно так же, как и доказательство существования математического ожидания E(x,f), лишь с заменой 1/2 в формуле (16) на частоту попадания элементов выборки xi в шар K(R(0)), каковая, очевидно, стремится к вероятности попадания случайного элемента Поэтому пойдем другим путем, не опирающимся к тому же на вероятностную модель выборки. Положим
Если х входит в дополнение шара K(HR(1)), то аналогично (15) имеем
При достаточно большом H из (17) и (18) следует, что Следовательно, Argmin достаточно искать на K(HR(1)). Заключение теоремы 2 следует из того, что на бикомпактном пространстве K(HR(1)) минимизируется непрерывная функция. Теорема 2 полностью доказана. О формулировках законов больших чисел. Пусть
при В силу классического закона больших чисел при
в смысле сходимости по вероятности, если правая часть существует (теорема А.Я. Хинчина, 1923 г.). Если пространство Х состоит из конечного числа элементов, то из соотношения (20) легко вытекает (см., например, [3, с.192-193]), что
Другими словами, Если
Однако с прикладной точки зрения доказательство соотношений (21)-(22) не дает достаточно уверенности в возможности использования Замечание. Если в соотношении (20) рассмотреть сходимость с вероятностью 1, то аналогично (21) получим т.н. усиленный закон больших чисел [3, с.193-194], согласно которому с вероятностью 1 эмпирическое среднее Если Х не является конечным, например, Х = R1 , то соотношения (21) и (22) неверны. Поэтому необходимо искать иные формулировки закона больших чисел. В классическом случае сходимости выборочного среднего арифметического к математическому ожиданию, т.е.
В этом соотношении в отличие от (21) речь идет о попадании эмпирического среднего Обобщим эту формулировку. Как задать окрестность теоретического среднего в пространстве произвольной природы? Естественно взять его окрестность, определенную с помощью какой-либо метрики. Однако полезно обеспечить на ее дополнении до Х отделенность множества значений Ef(x( Поэтому мы сочли целесообразным определить такую окрестность с помощью самой функции Ef(x( Определение 3. Для любого Таким образом, в
Соотношение (24) допускает непосредственное обобщение на общий случай пространств произвольной природы. СХЕМА ЗАКОНА БОЛЬШИХ ЧИСЕЛ. Пусть
Аналогичным образом может быть сформулирована и общая идея усиленного закона больших чисел. Ниже приведены две конкретные формулировки "условий регулярности". Законы больших чисел. Начнем с рассмотрения естественного обобщения конечного множества - бикомпактного пространства Х. Теорема 3. В условиях теоремы 1 справедливо соотношение (25). Доказательство. Воспользуемся построенным при доказательстве теоремы 1 конечным открытым покрытием {Z1, Z2, ..., Zk} пространства Х таким, что для него выполнено соотношение (3). Построим на его основе разбиение Х на непересекающиеся множества W1, W2, ..., Wm (объединение элементов разбиения W1, W2, ..., Wm составляет Х). Это можно сделать итеративно. На первом шаге из Z1 следует вычесть Z2, ..., Zk - это и будет W1 . Затем в качестве нового пространства надо рассмотреть разность Х и W1 , а покрытием его будет {Z2, ..., Zk} . И так до k-го шага, когда последнее из рассмотренных покрытий будет состоять из единственного открытого множества Zk . Остается из построенной последовательности W1, W2, ..., Wk вычеркнуть пустые множества, которые могли быть получены при осуществлении описанной процедуры (поэтому, вообще говоря, m может быть меньше k). В каждом из элементов разбиения W1, W2, ..., Wm выберем по одной точке, которые назовем центрами разбиения и соответственно обозначим w1, w2, ..., wm. Это и есть то конечное множество, которым можно аппроксимировать бикомпактное пространство Х. Пусть y входит в Wj . Тогда из соотношения (3) вытекает, что
Перейдем к доказательству соотношения (25). Возьмем произвольное
Для обоснования этого неравенства рассмотрим все элементы разбиения W1, W2, ..., Wm, имеющие непустое пересечение с внешностью
где минимум берется по центрам всех элементов разбиения, имеющим непустое пересечение с внешностью
В силу закона больших чисел для действительнозначных случайных величин каждая из участвующих в соотношениях (27) и (29) средних арифметических имеет своими пределами соответствующие математические ожидания, причем в соотношении (29) эти пределы не менее поскольку точки vi лежат вне и достаточно большом n, обеспечивающем необходимую близость рассматриваемого конечного числа средних арифметических к их математическим ожиданиям, справедливо неравенство (27). Из неравенства (27) следует, что пересечение En(f) с внешностью Если Х не является бикомпактным пространством, то необходимо суметь оценить рассматриваемые суммы "на периферии", вне бикомпактного ядра, которое обычно выделяется естественным путем. Один из возможных комплексов условий сформулирован выше в теореме 2. Теорема 4. В условиях теоремы 2 справедлив закон больших чисел, т.е. соотношение (25). Доказательство. Будем использовать обозначения, введенные в теореме 2 и при ее доказательстве. Пусть r и R, r < R, - положительные числа. Рассмотрим точку х в шаре K(r) и точку y вне шара K(R). Поскольку
то
Положим Сравним а в силу неравенства (30) где Card I(n,r) - число элементов в множестве индексов I(n,r). Следовательно,
где J = Card I(n,r) - биномиальная случайная величина B(n,p) с вероятностью успеха p = P{
где
Выберем R так, чтобы Тогда
и согласно (31), (32) и (33) при
для любого y вне K(R). Из (34) следует, что минимизировать
с вероятностью не менее 1-2 Пусть Согласно (36) с вероятностью не менее при что и завершает доказательство теоремы 4. Справедливы и иные варианты законов больших чисел, полученные, в частности, в статье [27]. Асимптотическое поведение решений экстремальных статистических задач. Если проанализировать приведенные выше постановки и результаты, особенно теоремы 1 и 3, то становится очевидной возможность их обобщения. Так, доказательства этих теорем практически не меняются, если считать, что функция f(x,y) определена на декартовом произведении бикомпактных пространств X и Y. Тогда можно считать, что элементы выборки лежат в Х, аY - пространство параметров, подлежащих оценке. Пусть, например, выборка взята из распределения с плотностьюp(x,y). Если положить f(x,y) = - ln p(x,y) , то задача нахождения эмпирического среднего переходит в задачу оценивания неизвестного параметра y методом максимального правдоподобия, а законы больших чисел переходят в утверждения о состоятельности этих оценок в случае пространств X и Y общего вида. В случае функции f(x,y) общего вида можно говорить об определении и состоятельности так называемых оценок минимального контраста. Частными случаями этих оценок являются, например, устойчивые (робастные) оценки Тьюки-Хубера (см. главу 10 ниже), оценки параметров в задачах аппроксимации (параметрической регрессии) в пространствах произвольной природы. Можно пойти и дальше в обобщении законов больших чисел. Пусть известно, что при каждом конкретном y при безграничном росте n имеет быть сходимость по вероятности fn(x( В каких случаях и в каком смысле Argmin {fn(x( Причем здесь можно под n понимать натуральное число. А можно рассматривать "сходимость по фильтру" в смысле Картана и Бурбаки [29, с.118]. В частности, описывать ситуацию вектором, координаты которого - объемы нескольких выборок, и все они безгранично растут. В классической математической статистике такие постановки рассматривать не любят. Поскольку, как уже отмечалось, основные задачи прикладной статистики можно представить в виде оптимизационных задач, то ответ на поставленный вопрос дает возможность единообразного подхода к изучению асимптотики решений разнообразных экстремальных статистических задач. Одна из возможных формулировок дана и обоснована выше. Другая - в работе [28]. Она основана на использовании понятий асимптотической равномерной разбиваемости и координатной асимптотической равномерной разбиваемости. С помощью указанных подходов удается стандартным образом обосновывать состоятельность оценок характеристик и параметров в основных задачах прикладной статистики. К сожалению, в рамках настоящей главы нет возможности подробнее остановиться на проблеме оценивания. Рассматриваемую тематику можно развивать дальше, в частности, рассматривать пространства X и Y, не являющиеся бикомпактными, а также изучать скорость сходимости эмпирических средних к теоретическим. Медиана Кемени и экспертные оценки. Рассмотрим частный случай пространств нечисловой природы - пространство бинарных отношений на конечном множестве Определение 4. Расстоянием Кемени между бинарными отношениями А и В, описываемыми матрицами ||a(i,j)|| и ||b(i,j)|| соответственно, называется Замечание. Иногда в определение расстояния Кемени вводят множитель, зависящий от k. Как уже отмечалось, указанное расстояние введено американским исследователем Дж. Кемени в 1950-х годах и получило в нашей стране известность благодаря монографии [24], в которой оно получено для упорядочений (т.е. ранжировок, в которых допускаются связи, или кластеризованных ранжировок - см. главу 12) исходя из некоторой системы аксиом. Некоторое время казалось, что аксиоматический подход избавляет от субъективизма в выборе расстояния, а потому - от субъективизма в выборе способа усреднения бинарных отношений. Монография [24] породила поток работ, в которых с помощью различных систем аксиом вводились те или иные расстояния в пространствах объектов нечисловой природы (в обзоре [23] на эту тему - 161 ссылка на соответствующие публикации). В итоге произвол в выборе метрик отодвинут на уровень произвола в выборе систем аксиом. Определение 5. Медианой Кемени для выборки, состоящей из бинарных отношений, называется эмпирическое среднее, построенное с помощью расстояния Кемени. Поскольку число бинарных отношений на конечном множестве конечно, то эмпирические и теоретические средние для произвольных показателей различия существуют и справедливы законы больших чисел, описанные формулами (21) и (22) выше. Бинарные отношения, в частности, упорядочения, часто используются для описания мнений экспертов. Тогда расстояние Кемени измеряет близость мнений экспертов, а медиана Кемени позволяет находить итоговое усредненное мнение комиссии экспертов. Расчет медианы Кемени обычно включают в информационное обеспечение систем принятия решений с использованием оценок экспертов. Речь идет, например, о математическом обеспечении автоматизированного рабочего места "Математика в экспертизе" (АРМ "МАТЭК"), предназначенного, в частности, для использования при проведении экспертиз в задачах экологического страхования. Поэтому представляет большой практический интерес численное изучение свойств медианы Кемени при конечном объеме выборки. Такое изучение дополняет описанную выше асимптотическую теорию, в которой объем выборки предполагается безгранично возрастающим ( Компьютерное изучение свойств медианы Кемени при конечных объемах выборок. С помощью специально разработанной программной системы В.Н. Жихаревым был проведен ряд серий численных экспериментов по изучению свойств выборочных медиан Кемени. Представление о полученных результатах дается приводимой ниже табл.1, взятой из статьи [30]. В каждой серии методом статистических испытаний определенное число раз моделировался случайный и независимый выбор экспертных ранжировок, а затем находились все медианы Кемени для смоделированного набора мнений экспертов. При этом в сериях 1-5 распределение ответа эксперта предполагалось равномерным на множестве всех ранжировок, а в серии 6 это распределение являлось монотонным относительно расстояния Кемени с некоторым центром (о понятии монотонности см. выше), т.е. вероятность выбора определенной ранжировки убывала с увеличением расстояния Кемени этой ранжировки от центра. Таким образом, серии 1-5 соответствуют ситуации, когда у экспертов нет почвы для согласия, нет группировки их мнений относительно некоторого единого среднего группового мнения, в то время как в серии 6 есть единое мнение - описанный выше центр, к которому тяготеют ответы экспертов. Результаты, приведенные в табл.1, можно комментировать разными способами. Неожиданным явилось большое число элементов в выборочной медиане Кемени - как среднее, так и особенно максимальное. Одновременно обращает на себя внимание убывание этих чисел при росте числа экспертов и особенно при переходе к ситуации реального существования группового мнения (серия 6). Достаточно часто один из ответов экспертов входит в медиану Кемени (т.е. пересечение множества ответов экспертов и медианы Кемени непусто), а диаметр медианы как множества в пространстве ранжировок заметно меньше диаметра множества ответов экспертов. По этим показателям - наилучшее положение в серии 6. Грубо говоря, всяческие "патологии" в поведении медианы Кемени наиболее резко проявляются в ситуации, когда ее применение не имеет содержательного обоснования, т.е. когда у экспертов нет основы для согласия, их ответы равномерно распределены на множестве ранжировок. Увеличение числа испытаний в 10 раз при переходе от серии 1 к серии 5 не очень сильно повлияло на приведенные в таблице характеристики, поэтому представляется, что суть дела выявляется при числе испытаний (в методе Монте-Карло), равном 100 или даже 50. Увеличение числа объектов или экспертов увеличивает число элементов в рассматриваемом пространстве ранжировок, а потому уменьшается частота попадания какого-либо из мнений экспертов внутрь медианы Кемени, а также отношение диаметра медианы к диаметру множества экспертов, число элементов медианы Кемени (среднее и максимальное). Можно сказать, что увеличение числа объектов или экспертов уменьшает степень дискретности задачи, приближает ее к непрерывному случаю, а потому уменьшает выраженность различных "патологий". Есть много интересных результатов, которые мы здесь не рассматриваем. Они связанны, в частности, со сравнением медианы Кемени с другими методами усреднения мнений экспертов, например, с нахождением итогового упорядочения по методу средних рангов, а также с использованием малых окрестностей ответов экспертов для поиска входящих в медиану ранжировок, с теоретической и численной оценкой скорости сходимости в законах больших чисел. Табл.1. Вычислительный эксперимент по изучению свойств медианы Кемени
|