|
|
|
Эконометрика Учебник. М.: Издательство "Экзамен", 2002. Глава 9. Статистика интервальных данных 9.2. Примеры статистического анализа интервальных данных Поясним теоретические концепции статистики интервальных данных на простых примерах. Пример 1. Оценивание математического ожидания. Пусть необходимо оценить математическое ожидание случайной величины с помощью обычной оценки (см. главу 4) - среднего арифметического результатов наблюдений, т.е. Тогда Поскольку то в обозначениях предыдущего пункта Следовательно, рациональный объем выборки равен Для практического использования полученной формулы надо оценить дисперсию результатов наблюдений. Можно доказать, что, поскольку Здесь и далее рассуждения часто идут на двух уровнях. Первый - это уровень "истинных" случайных величин, обозначаемых "х", описывающих реальность, но неизвестных эконометрику. Второй - уровень известных эконометрику величин "у", отличающихся погрешностями от истинных. Погрешности малы, поэтому функции от хотличаются от функций от у на некоторые бесконечно малые величины. Эти соображения и позволяют нам использовать s2(y) как оценку D(x1). Итак, выборочной оценкой рационального объема выборки является Уже на этом первом рассматриваемом примере видим, что рациональный объем выборки находится не где-то вдали, а непосредственно рядом с теми объемами, с которыми имеет дело любой практически работающий эконометрик. Например, если статистик знает, что По сравнению с главой 4 доверительный интервал для математического ожидания (для заданной доверительной вероятности
где По поводу формулы (4) была довольно жаркая дискуссия среди специалистов. Отмечалось, что она получена на основе Центральной Предельной Теоремы теории вероятностей и может быть использована при любом распределении результатов наблюдений (с конечной дисперсией). Если же имеется дополнительная информация, то, по мнению отдельных специалистов, формула (4) может быть уточнена. Например, если известно, что распределение xi является нормальным, в качестве u() целесообразно использовать квантиль распределения Стьюдента. К этому надо добавить, что по небольшому числу наблюдений нельзя надежно установить нормальность, а при росте объема выборки квантили распределения Стьюдента приближаются к квантилям нормального распределения. Вопрос о том, часто ли результаты наблюдений имеют нормальное распределение, подробно обсуждался в начале главы 4. Пример 2. Оценивание дисперсии. Для статистики f(y) = s2(y), где s2(y) - выборочная дисперсия (несмещенная оценка теоретической дисперсии), имеем Можно показать, что нотна Nf(y) сходится к по вероятности с точностью до Известно что случайная величина является асимптотически нормальной с математическим ожиданием 0 и дисперсией Из сказанного вытекает, что в статистике интервальных данных асимптотический доверительный интервал для дисперсии где где Рациональный объем выборки для дисперсии равен а выборочную оценку рационального объема выборки Что можно сказать о численной величине рационального объема выборки? Как и в случае оценивания математического ожидания, она отнюдь не выходит за пределы обычно используемых объемов выборок. Так, если распределение результатов наблюдений Например, если
|