А.И. Орлов
Математика случая
Вероятность и статистика – основные факты

Учебное пособие. М.: МЗ-Пресс, 2004.    
 

6. Некоторые типовые задачи прикладной статистики и методы их решения

Методы классификации

Следующий тип задач многомерного статистического анализа – задачи классификации. Они согласно [2, 20] делятся на три принципиально различных вида – дискриминантный анализ, кластер-анализ, задачи группировки.

Задача дискриминантного анализа состоит в нахождении правила отнесения наблюдаемого объекта к одному из ранее описанных классов. При этом объекты описывают в математической модели с помощью векторов, координаты которых – результаты наблюдения ряда признаков у каждого объекта. Классы описывают либо непосредственно в математических терминах, либо с помощью обучающих выборок. Обучающая выборка – это выборка, для каждого элемента которой указано, к какому классу он относится.

Рассмотрим пример применения дискриминантного анализа для принятия решений в технической диагностике. Пусть по результатам измерения ряда параметров продукции необходимо установить наличие или отсутствие дефектов. В этом случае для элементов обучающей выборки указаны дефекты, обнаруженные в ходе дополнительного исследования, например, проведенного после определенного периода эксплуатации. Дискриминантный анализ позволяет сократить объем контроля, а также предсказать будущее поведение продукции. Дискриминантный анализ сходен с регрессионным – первый позволяет предсказывать значение качественного признака, а второй – количественного. В статистике объектов нечисловой природы разработана математическая схема, частными случаями которой являются регрессионный и дискриминантный анализы [21].

Кластерный анализ применяют, когда по статистическим данным необходимо разделить элементы выборки на группы. Причем два элемента группы из одной и той же группы должны быть «близкими» по совокупности значений измеренных у них признаков, а два элемента из разных групп должны быть «далекими» в том же смысле. В отличие от дискриминантного анализа в кластер-анализе классы не заданы, а формируются в процессе обработки статистических данных. Например, кластер-анализ может быть применен для разбиения совокупности марок стали (или марок холодильников) на группы сходных между собой.

Другой вид кластер-анализа – разбиение признаков на группы близких между собой. Показателем близости признаков может служить выборочный коэффициент корреляции. Цель кластер-анализа признаков может состоять в уменьшении числа контролируемых параметров, что позволяет существенно сократить затраты на контроль. Для этого из группы тесно связанных между собой признаков (у которых коэффициент корреляции близок к 1 – своему максимальному значению) измеряют значение одного, а значения остальных рассчитывают с помощью регрессионного анализа.

Задачи группировки решают тогда, когда классы заранее не заданы и не обязаны быть «далекими» друг от друга. Примером является группировка студентов по учебным группам. В технике решением задачи группировки часто является параметрический ряд – возможные типоразмеры группируются согласно элементам параметрического ряда. В литературе, нормативно-технических и инструктивно-методических документах по прикладной статистике также иногда используется группировка результатов наблюдений (например, при построении гистограмм).

Задачи классификации решают не только в многомерном статистическом анализе, но и тогда, когда результатами наблюдений являются числа, функции или объекты нечисловой природы. Так, многие алгоритмы кластер-анализа используют только расстояния между объектами. Поэтому их можно применять и для классификации объектов нечисловой природы, лишь бы были заданы расстояния между ними. Простейшая задача классификации такова: даны две независимые выборки, требуется определить, представляют они два класса или один. В одномерной статистике эта задача сводится к проверке гипотезы однородности [2].

Предыдущая страница | Оглавление | Следующая страница



Защита от автоматического заполнения   Введите символы с картинки*